动态规划 leetcode-309 最佳买卖股票时机含冷冻期

1.题目

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:

输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

2.解题过程

动态规划 leetcode-309 最佳买卖股票时机含冷冻期
这道题跟188题很像,可以利用相同的套路,由于可以交易无限次,所以可以不限制K,但是每次卖出后需要有一个冷冻期,
所以状态转移应该变为:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
max( 选择 rest , 选择 sell )
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
max( 选择 rest , 选择buy(这里需要利用i-2来更新,因为冷冻期))

代码:

class Solution:
    def maxProfit(self, prices):
        n = len(prices)
        if n<1:
            return 0
        dp = [[0 for _ in range(2)] for _ in range(n)]
        dp[0][1] = -prices[0]
        for i in range(1, n):
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]) 
            dp[i][1] = max(dp[i - 1][1], dp[i - 2][0] - prices[i]) #前天买的今天才能卖
#            dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
#            dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
            print(i,dp[i][0],dp[i][1])
        return dp[i][0]
s = Solution()
s.maxProfit([1,2,3,0,2])  

188题链接:
https://blog.csdn.net/mydoubts/article/details/105793907

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值