1.题目
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
2.解题过程
动态规划 leetcode-309 最佳买卖股票时机含冷冻期
这道题跟188题很像,可以利用相同的套路,由于可以交易无限次,所以可以不限制K,但是每次卖出后需要有一个冷冻期,
所以状态转移应该变为:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
max( 选择 rest , 选择 sell )
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
max( 选择 rest , 选择buy(这里需要利用i-2来更新,因为冷冻期))
代码:
class Solution:
def maxProfit(self, prices):
n = len(prices)
if n<1:
return 0
dp = [[0 for _ in range(2)] for _ in range(n)]
dp[0][1] = -prices[0]
for i in range(1, n):
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 2][0] - prices[i]) #前天买的今天才能卖
# dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
# dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
print(i,dp[i][0],dp[i][1])
return dp[i][0]
s = Solution()
s.maxProfit([1,2,3,0,2])
188题链接:
https://blog.csdn.net/mydoubts/article/details/105793907