创建环境(以为CFF环境为例)
conda create -n CCF python==3.8
conda env remove --name CCF
换源
conda 换源
Windows 中,该文件的位置在:C:\Users(你的用户名).condarc
Linux 中,该文件的位置在:~/.condarc
修改.condarc文件内容为:
channels:
- defaults
show_channel_urls: true
channel_alias: http://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
查看当前的源 conda config --show channels
pip 换源
pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple/ 中科大源(快,稳定)
豆瓣源:https://pypi.douban.com/simple/(快)
conda env list
conda activate CCF
cuda118+cudnn118
cuda、cudnn和torch环境的关系:cuda和cudnn是根据电脑显卡支持的型号安装的(基本上型号之前的版本都能安装),电脑上配一次配好了就行(当然想配不同版本的可以安装多个,每次切换环境变量应该都需要前移),conda创建的多个虚拟环境可以安装不同版本的GPU版本的torch来使用(官网有命令直接用)。
cuda安装:https://developer.nvidia.com/cuda-toolkit-archive官网下载你电脑显卡支持的最新版本之前的版本就行(nvidia-smi查看电脑支持的CUDA最大版本),安装完记住安装路径,在系统环境变量的Path变量填上相应的环境变量(应该是安装目录路径和安装目录下的bin目录路径)
cudnn安装:https://developer.nvidia.com/rdp/cudnn-archive网站下载对应cuda版本的压缩包解压(include、bin、lib三个文件夹)放到cuda对应的安装目录下(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\下)
配置Anaconda环境变量
C:\ProgramData\anaconda3
C:\ProgramData\anaconda3\Scripts
C:\ProgramData\anaconda3\Library\bin
C:\ProgramData\anaconda3\Library\mingw-w64\bin
安装 torch
这是从Pytorch网站(https://download.pytorch.org/whl/torch_stable.html)的下载的.whl文件的离线安装方式:
pip install D:\cu118\torch-2.0.1+cu118-cp38-cp38-win_amd64.whl
pip install D:\cu118\torchaudio-2.0.2+cu118-cp38-cp38-win_amd64.whl
pip install D:\cu118\torchvision-0.15.2+cu118-cp38-cp38-win_amd64.whl
pip install D:\cu118\charset_normalizer-2.1.1-py3-none-any.whl
查看安装的包 conda list
安装GPU版本的DGL库及其他库
pip install ogb
pip install tensorboardX
pip install dgl -f https://data.dgl.ai/wheels/cu118/repo.html
pip install dglgo -f https://data.dgl.ai/wheels-test/repo.html
conda list | findstr dgl
我安装的dgl-116所用的方式
dgl-116
dgl离线安装方式:在anaconda官网下找到要安装的版本,进行下载
https://anaconda.org/dglteam/dgl-cuda11.3/files下载解压后,将对应文件拖入你环境的lib下site-packages文件夹下面
windows下DGL库cuda版本安装:
1、
在dgl官网下
https://www.dgl.ai/pages/start.html
找到对应版本 根据命令安装
2、在清华的源中,搜索对应dgl版本
找到对应版本,下载后,在下载的文件夹中pip安装即可
清华源:https://pypi.tuna.tsinghua.edu.cn/simple/
3、在anaconda官网下找到要安装的版本,进行下载
https://anaconda.org/dglteam/dgl-cuda11.3/files
下载解压后,将对应文件拖入你环境的lib下site-packages文件夹下面