自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 C++ OpenCV 特征检测与描述

本文概述了OpenCV中常用的特征检测与描述算法,包括SIFT、SURF、ORB和FAST。这些算法能提取图像关键点并生成描述符,实现鲁棒匹配。文章提供了ORB算法的代码示例,演示了关键点检测、描述符生成和可视化过程,并介绍了特征匹配及优化方法(距离筛选、RANSAC)。最后对比了不同算法的速度、鲁棒性和适用场景,指出ORB因其速度和专利免费特性适合实时应用。

2025-08-23 07:40:32 1173

原创 Matplotlib imshow() 方法

Matplotlib的imshow()方法详解:用于可视化二维数组、RGB图像和伪彩色映射。支持颜色映射(cmap)、数值范围控制(vmin/vmax)、图像插值、透明度调节(alpha)等功能。可显示真实图像文件,控制坐标轴比例(extent/aspect),创建自定义颜色映射。注意输入数组应为(M,N)、(M,N,3)或(M,N,4)形状,默认原点在左上角。结合colorbar()和子图功能,适用于科学数据可视化和图像处理场景。

2025-08-22 12:30:00 289

原创 Matplotlib 直方图

本文介绍了使用Matplotlib绘制直方图的基本方法与应用技巧。主要内容包括:基础直方图绘制、自定义样式(颜色/透明度/边框)、多组数据对比(叠加/堆叠显示)、归一化处理、结合密度曲线、水平直方图、累积分布图等。还演示了自定义区间边界和二维直方图等进阶应用。通过调整hist()函数的参数,可以灵活实现不同类型的数据分布可视化,满足多样化的分析需求。所有示例均配有完整代码,便于快速掌握直方图的绘制方法。

2025-08-22 10:45:00 426

原创 Matplotlib 饼图

Matplotlib饼图绘制指南:使用plt.pie()函数可创建基础饼图,支持自定义标签、颜色和百分比显示。通过explode参数可突出特定扇区,wedgeprops可调整边缘样式。进阶功能包括:创建环形图(调整宽度参数)、嵌套饼图(叠加绘图)、自定义标签格式(autopct函数)和交互式显示(mplcursors库)。最佳实践建议限制7个以内类别、按大小排序数据、使用高对比度颜色。文中提供了从基础到高级的完整代码示例,涵盖饼图绘制的核心技巧和可视化优化方法。

2025-08-21 14:15:00 387

原创 Matplotlib 散点图

Matplotlib散点图绘制指南:从基础到进阶技巧。介绍了基本散点图绘制方法(scatter()函数),支持自定义颜色、大小和透明度。讲解了如何用颜色区分分类数据,添加颜色条和图例。进阶技巧包括添加趋势线、边缘直方图、3D散点图绘制等。最后给出最佳实践建议:避免过度绘制、合理选择标记大小、使用色盲友好配色、添加参考线等。示例代码展示了各种散点图的具体实现方法。

2025-08-21 12:00:00 311

原创 Matplotlib 柱形图

本文介绍了Matplotlib柱形图的基本用法和高级技巧。主要内容包括:1)使用bar()函数创建基础柱形图;2)通过参数自定义柱形宽度、颜色和透明度等样式;3)实现分组柱形图和堆叠柱形图的方法;4)创建横向柱形图的barh()函数;5)添加数据标签提升可读性。文章还提供了结合Pandas数据框的示例,并给出了避免视觉混乱等实用建议。这些技巧可以帮助用户快速掌握数据可视化中柱形图的常用绘制方法。

2025-08-20 10:45:00 392

原创 Matplotlib 绘制多图

Matplotlib提供了多种绘制多图的方法,包括基础子图创建、复杂布局和3D混合绘图。常见方法有:1)使用plt.subplots()创建网格子图;2)通过GridSpec实现灵活布局;3)用sharex/sharey共享坐标轴;4)结合subplot2grid创建不规则排列;5)在Matplotlib 3.3+中可用subplot_mosaic进行语义化布局;6)支持混合2D/3D子图。所有图形可通过plt.savefig()保存为高分辨率图像。这些方法能满足从简单到复杂的多图绘制需求。

2025-08-20 10:15:00 529

原创 Matplotlib imsave() 方法

Matplotlib的imsave()函数用于将数组数据保存为图像文件,支持PNG、JPG等多种格式。该函数可自动处理数据归一化和颜色映射,支持自定义颜色方案(cmAP)、数据范围控制(vmin/vmax)、灰度图像和透明度保存。通过参数可设置分辨率(dpi)和元数据,适合批量保存数组数据。相比Pillow库,imsave()在颜色映射处理上更具优势,但处理大数组时性能稍逊。使用时需注意文件格式推断、输入数据类型等细节。

2025-08-19 16:30:00 580

原创 Matplotlib 网格线

Matplotlib网格线使用指南:通过grid()方法可控制图表网格的显示与样式,支持颜色、线型、透明度等参数调整。可单独控制横纵轴网格,设置主/次刻度对齐,极坐标和3D图形也有专用网格方法。结合ticker模块可自定义网格间隔,使用样式表可快速应用预设网格样式,多子图布局中可单独控制各图网格显示。本文提供了从基础到高级的网格线控制方案示例代码。

2025-08-19 13:45:00 508

原创 Pandas 透视表与交叉表

摘要:Pandas提供了透视表(pivot_table)和交叉表(crosstab)两种数据分析工具。透视表支持多维度数据聚合,可自定义聚合函数,适用于复杂计算;交叉表专注于分类数据的频率统计,支持标准化处理。两者都支持多级分组和总计显示,透视表适用于数值型数据聚合分析,而交叉表更适合分类数据频次统计。通过合理选用这两种工具,可以高效完成数据的分层分析与统计计算(150字)

2025-08-18 08:15:00 394

原创 Pandas 自定义函数应用

Pandas自定义函数扩展了数据分析能力,通过apply方法实现灵活数据处理。文章介绍了多种应用场景:基本列操作(如平方运算)、行级多列处理(乘积计算)、lambda简化(字符串转换)、向量化优化(对数变换)、分组聚合(极差计算)、条件判断(数值分类)及多参数传递(阈值判断)。强调应合理选择方法,简单操作用内置/向量化函数,复杂逻辑用apply,大数据时注意性能优化。自定义函数能有效满足从简单到复杂的各类业务需求。

2025-08-18 07:00:00 906

原创 Pandas 数据排序与聚合

摘要:Pandas提供了强大的数据排序和聚合功能,包括sort_values()和sort_index()进行单列/多列排序,以及groupby()结合聚合函数实现数据汇总。文章演示了基本分组聚合、多列分组、自定义聚合函数等操作,并介绍了transform()、filter()等高级技巧。针对大数据集,建议使用类别类型优化和eval()表达式提升性能。最后通过电商数据分析实例展示了如何计算产品销售额统计指标和时间序列重采样。这些方法为数据分析和处理提供了高效工具。

2025-08-17 12:00:00 333

原创 Pandas 数据可视化

Pandas提供了简便的数据可视化功能,基于Matplotlib实现多种图表展示。通过DataFrame和Series的plot()方法,可快速生成折线图、柱状图、饼图等常见图表,支持调整样式、添加标注等自定义操作。文章介绍了基础图表绘制、多子图布局、时间序列可视化等技巧,并展示了结合Seaborn增强效果以及使用Plotly制作交互式图表的方法。最后还包含图表保存功能,帮助用户创建专业的数据可视化效果。

2025-08-17 07:30:00 571

原创 Pandas 数据合并与连接

摘要:Pandas提供多种数据合并方法:pd.concat()实现多表纵向/横向堆叠,支持axis参数调整方向;pd.merge()执行类似SQL的连接操作,支持inner/outer/left等连接方式;join()实现索引连接;combine_first()用于缺失值填充。高级技巧包括处理列名冲突(suffixes)、去重(drop_duplicates)和类型转换。性能优化建议:对连接键排序、使用高效数据类型、分块处理大数据及设置sort=False参数。这些方法为结构化数据整合提供了灵活高效的解决方

2025-08-16 21:42:13 902

原创 Pandas 相关性分析

Pandas相关性分析摘要:Pandas的corr()函数可计算变量间线性相关性,支持皮尔逊(默认)、斯皮尔曼和肯德尔三种方法。通过热力图可视化相关系数矩阵(-1到1),能直观展示变量关系。分析时需处理缺失值(删除或填充),时间序列数据可用滚动窗口观察动态相关性。对于非线性关系,建议结合散点矩阵图辅助判断。实际应用中,如房价数据分析,可快速识别关键影响因素。注意根据数据特性选择合适方法,并配合可视化工具增强分析效果。

2025-08-16 21:38:43 443

原创 Pandas 数据清洗之代码实例

Pandas数据清洗基础操作摘要:本文介绍了使用Pandas进行数据清洗的核心方法。包括处理缺失值(删除或填充)、识别删除重复数据、数据类型转换、异常值处理(Z-score和IQR方法)、文本数据清洗(去除空格、大小写转换等)以及数据标准化技巧。文章还提供了复杂清洗案例组合和性能优化建议(指定数据类型、分块处理等)。这些基础操作能有效提升数据质量,为后续分析建模做好准备。实际应用中需根据数据特点灵活组合多种清洗方法。

2025-08-16 21:37:42 293

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除