Floyd算法

本文介绍了Floyd算法,一种用于求解有向或无向图中任意两点间最短路径的方法。通过逐步加入中间顶点,更新路径长度,最终得到所有顶点之间的最短路径。算法描述包括邻接矩阵初始化、递推计算过程以及如何存储最短路径信息。
摘要由CSDN通过智能技术生成

弗洛伊德算法
用于求有向或者无向图中任意两点间最短路径 


算法思想描述:对于一个顶点个数为n的图,定义一个n*n的方阵,除对角线元素为0之外,其余元素A[i][j]表示从顶点vi到vj的有向路径长度
初始时,A = 图的邻接矩阵:对于任意两个顶点vi和vj,如果他们之间有边,则以此边的权值作为他们的最短路径长度,如果没有则初始化为MAX
以后逐步尝试在vi和vj之间加入其他顶点作为中间顶点,如果加入后的路径值比原来的路径长度减少了,则更新为加入后的路径长度 

Floyd算法描述:
定义一个n阶方阵序列:A(-1) A(0) A(1) A(2) ...A(n-1)
A(-1)[i][j]表示顶点vi到顶点vj的直接边的长度,A(-1)就是图的邻接矩阵Edge[n][n]
A(0)[i][j]表示从顶点vi到顶点vj,中间顶点(如果有,则)是v0的最短路径长度
A(1)[i][j]表示从顶点vi到顶点vj,中间顶点序号不大于1的最短路径长度
...
A(k)[i][j]表示从顶点vi到顶点vj,中间顶点序号不大于k的最短路径长度
A(n-1)[i][j]是最终求得的,从vi到vj的最短路径长度

递推计算A(k)[i][j]:
增加vk作为中间结点后,对于图中的每一对顶点vi和vj,都要比较从vi到vk的最短路径长度加上vk到vj的最短路径长度是否小于原来的路径长度,即比较
A(k-1)[i][k] + A(k-1)[k][j] 和 A[i][j]的大小,取较小者为A(k)[i][j]的值。因此,Floyd递推公式为
A(-1)[i][j] = Edge[i][j]
A(k)[i][j] = min{ A(k-1)[i]

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值