Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
- You may assume the interval's end point is always bigger than its start point.
- You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ] Output: [-1, 0, 1] Explanation: There is no satisfied "right" interval for [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point; For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ] Output: [-1, 2, -1] Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. For [2,3], the interval [3,4] has minimum-"right" start point.
思路:
需要返回一个数组,数组的内容是第一个找到的间隔,并且这个间隔开始大于等于当前间隔结束的间隔在数组中的下标,如果找不到,下标为-1。比如实例2中,[3,4]没有间隔的开始时间大于等于4,所以返回的是-1,[2,3]可以找到[3,4]3等于3,所以返回[3,4]的数组下标是0。
Java中提供了TreeMap,可以按顺序返回内容。
public int[] findRightInterval(Interval[] intervals) {
TreeMap<Integer, Integer> map = new TreeMap<Integer, Integer>();
for (int i = 0; i < intervals.length; i++) {
map.put(intervals[i].start, i);
}
int[] ret = new int[intervals.length];
for (int i = 0; i < intervals.length; i++) {
// 获取大于等于intervals[i].end的start
Map.Entry<Integer, Integer> item = map
.ceilingEntry(intervals[i].end);
if (item != null) {
ret[i] = item.getValue();
} else {
ret[i] = -1;
}
}
return ret;
}