fiftyone-dataset使用基础

1.创建dataset

将dataset写入数据库时,对于已有的dataset name会报错:

解决方法:指定覆盖写 添加参数overwrite=True, 默认为False

# 在写入数据集时,指定overwrite=True,表示当dataset_name在数据库中已存在时,则覆盖
dataset = fo.Dataset(dataset_name, overwrite=True)  
dataset.add_samples(samples) # 添加samples到数据集
for idx,sample in enumerate(dataset):
    sample["index"]=idx # 为每个sample添加索引
    sample.save()

2.加载已有的dataset

import fiftyone as fo
	
dataset = fo.load_dataset(...)

3.查看所有datasets

import fiftyone as fo
datsets_list=fo.list_datasets()

4.删除指定dataset

import fiftyon as fo
fo.delete_dataset('dataset_name')

ELPV (Efficient Large-scale Parallel VAEs) 是一个用于大规模并行生成模型的库,特别是变分自编码器(VAEs)。"elpv-dataset-master"可能是这个库的一个示例数据集或代码仓库,通常包含训练、测试和使用的说明文档。 对于 "elpv-dataset-master" 使用教程,一般的步骤可能会包括: 1. **安装依赖**:首先,你需要确保已经安装了Python的必要环境和库,如TensorFlow或PyTorch(如果库是基于这些框架的),以及dataset相关的处理工具如NumPy和Pandas。 2. **克隆代码仓库**:通过Git或其他版本控制系统,从GitHub或其他源码托管平台下载"elpv-dataset-master"到本地项目目录。 ```bash git clone https://github.com/<repository_url>/elpv-dataset.git ``` 3. **理解结构**:查看文件夹结构,找到`data`, `models`, `scripts`等部分,了解数据集存储位置以及模型训练和评估脚本的位置。 4. **加载数据**:根据`data`文件夹下的README或者代码注释,加载和预处理数据,这可能涉及到数据清洗、归一化、分割等工作。 5. **配置模型**:在`models`目录下查看配置文件或相应脚本,了解如何设置VAE的超参数和架构。 6. **训练模型**:运行`train.py`或类似脚本来训练模型,可能需要调整并行度参数以利用GPU或TPU资源。 7. **评估与可视化**:训练完成后,使用`evaluate.py`或`generate_samples.py`来评估模型性能,并查看生成的结果。 8. **修改和实验**:根据需求对模型进行修改,例如尝试不同的网络结构、优化算法或学习率策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值