推荐系统
文章平均质量分 95
MYJace
毕业于UNSW,是一名IT研究生,对AI领域充满兴趣
展开
-
推荐系统(Recommender System)笔记 06:推荐系统实例
推荐系统(Recommender System)06:推荐系统实例Facebook 的深度学习推荐系统Facebook 的推荐系统应用场景GBDT + LR 组合模型实时数据流框架降采样和模型校正DLRMAirbnb 基于 Embedding 的实时搜索推荐系统YouTube 深度学习视频推荐系统阿里巴巴深度学习推荐系统在本节中,我们将具体来看几家世界级的巨头公司对于推荐系统的应用实例Facebook 的深度学习推荐系统Facebook 于 2014 年提出了经典的 GBDT + LR 的 CTR 模原创 2021-09-27 10:03:49 · 1215 阅读 · 0 评论 -
推荐系统(Recommender System)笔记 05:推荐系统的评估
推荐系统(Recommender System)05:推荐系统的评估离线评估方法与基本评价指标离线评估的主要方法Holdout 检验交叉验证 (Cross Validation)自助法 (Bootstrap)离线评估的指标准确率 (Accuracy)正确率 (Precision) 和召回率 (Recall)均方根误差 (RMSE)对数损失函数 (LogLoss)直接评估推荐序列的离线指标P-R 曲线ROC 曲线平均精度均值(mAP)更接近线上环挠的离线评估方法 - Replay动态离线评估方法Netflix原创 2021-09-16 10:59:51 · 1020 阅读 · 0 评论 -
推荐系统(Recommender System)笔记 04:推荐系统工程实现
推荐系统(Recommender System)04:推荐系统工程实现推荐系统的数据流批处理大数据架构(Batch Processing)流计算大数据架构 (Streaming Processing)Lambda 架构Kappa 架构大数据平台与推荐系统的结合推荐模型的离线训练Spark MLlibParameter ServerTensorFlow推荐模型的上线部署预存 推荐/Embedding 结果自研模型线上服务平台训练 Embedding + 轻量级线上模型利用 PMML 转换并部署模型Tensor原创 2021-09-13 09:58:56 · 833 阅读 · 0 评论 -
推荐系统(Recommender System)笔记 03:推荐系统的重要思想
推荐系统(Recommender System)笔记 03:推荐系统的重要思想推荐系统的特征工程构建特征工程的原则推荐系统的常用特征用户行为数据用户关系数据属性、标签类数据内容类数据上下文信息统计类特征组合特征常用特征处理方法连续型 (continuous) 特征类别型 (categorical) 特征推荐系统召回层 (Recall) 的主要策略召回层 (recall) 和排序 (sort) 层的功能特点多路召回策略Embedding 召回策略推荐系统的实时性实时性对于推荐系统的重要性“特征” 的实时性1原创 2021-09-09 14:16:26 · 1247 阅读 · 0 评论 -
推荐系统(Recommender System)笔记 01:推荐系统的演化
推荐系统(Recommender System)01推荐系统的架构数据部分模型部分传统推荐模型协同推荐(Collaborative Filtering)矩阵分解(Matrix Factorization)逻辑回归(Logistic Regression)自动特征交叉的解决方案POLY2 模型 - 特征交叉的开始FM 模型 - 隐向量特征交叉FFM 模型 - 引入特征域* 从 POLY2 到 FFM 的演化过程GBDT + LR - 特征工程模型化GBDT 模型LS-PLM - 阿里曾经的主流推荐模型深度学习原创 2021-08-24 09:15:50 · 2502 阅读 · 0 评论 -
推荐系统(Recommender System)笔记 02:Embedding
推荐系统(Recommender System)笔记 02:Embedding什么是 Embedding?词向量Embedding 对于深度学习的重要性Word2vec训练过程“负采样”(Negative Sampling)Item2vec - Word2vec 在推荐系统中的推广Graph EmbeddingDeepWalkNode2vec同质性 (Homophily) 和结构性 (Structual Equivalence)切换 BFS 和 DFS 倾向性EGES - 综合性 Graph Embeddi原创 2021-09-02 13:10:54 · 698 阅读 · 0 评论