三维量子力学 量子力学(3)

文章详细讨论了量子力学中的动量概念,包括动量算符与位置算符的对易关系以及动量的球坐标表示。接着,文章深入到氢原子结构,解析了氢原子的波函数、能级公式和光谱。此外,还介绍了角动量的概念,包括角动量算符的对易性质、球谐函数以及氢原子中的角动量解。最后,文章探讨了自旋角动量,包括自旋算符、自旋态的叠加以及两个自旋-1/2粒子的组合。
摘要由CSDN通过智能技术生成

动量 p p p有三个分量,为 p x p_x px等。它们分别满足与位置坐标的对易关系,比如 p x = − i ℏ ∂ ∂ x p_x=-i\hbar\frac{\partial }{\partial x} px=ix。可以用位置坐标梯度算符表示即 p = − i ℏ ∇ \bm{p}=-i\hbar\nabla p=iℏ∇。位置矢量用 r \bm{r} r表示。

d 3 r d^3\bm{r} d3r(我喜欢写作 d V dV dV)区域发现它的概率是 ∣ Ψ ( r , t ) ∣ 2 d V |\Psi(\bm{r},t)|^2dV ∣Ψ(r,t)2dV。那么归一化条件是 ∫ ∣ Ψ ∣ 2 d V = 1 \int |\Psi|^2dV=1 ∣Ψ2dV=1

如果势能与时间无关,那么可以确定一组完备的定态 Ψ n ( r , t ) = ψ n ( r ) e − i E n t / ℏ \Psi_n(\bm{r},t)=\psi_n(\bm{r})e^{-iE_nt/\hbar} Ψn(r,t)=ψn(r)eiEnt/ℏ n = 1 , 2 , … n=1,2,\dots n=1,2,

基本量对易性

x x x y y y显然可以对易,这是常识。

根据动量位置算符关系可以算出 p x p_x px p y p_y py也对易(对 x x x y y y的求导顺序不影响)。

不同维度的坐标和动量,例如 x x x p y p_y py,对易。

Ehrenfest定理

根据黄金期变公式,与坐标、动量、时间有关的量 Q Q Q满足 d ⟨ Q ⟩ d t = i ℏ ⟨ [ H ^ , Q ^ ] ⟩ + ⟨ ∂ Q ∂ t ⟩ \frac{d\lang Q\rang}{dt}=\frac{i}{\hbar}\braket {[\hat H,\hat Q]}+\left\lang {\frac{\partial Q}{\partial t}}\right\rang dtdQ=i[H^,Q^]+tQ

第二项在求的时候是0。用上述公式就可以得出Ehrenfest定理。 d ⟨ r ⟩ d t = ⟨ p ⟩ m \frac{d\braket {\bm{r}}}{dt}=\frac{\braket{\bm{p}}}{m} dtdr=mp d ⟨ p ⟩ d t = ⟨ − ∇ V ⟩ \frac{d\braket{\bm{p}}}{dt}=\braket{-\nabla V} dtdp=V

球坐标波函数

因为没时间了所以之后会写得简略。

波函数由三个球坐标决定。可以分成半径部分和两个角的部分。 ψ = R Y \psi=RY ψ=RY

球坐标Laplace算子: ( 1 / r 2 ) ( r 2 ? P r ) P r + ( 1 / r 2 sin ⁡ θ ) ( sin ⁡ θ ? P θ ) P θ + ( 1 / r 2 sin ⁡ 2 θ ) ? P 2 ϕ (1/r^2)(r^2?_Pr)_Pr+(1/r^2\sin \theta)(\sin\theta?_P\theta)_P\theta+(1/r^2\sin^2\theta)?_{P^2}\phi (1/r2)(r2?Pr)Pr+(1/r2sinθ)(sinθ?Pθ)Pθ+(1/r2sin2θ)?P2ϕ

把球坐标Laplace算子放进薛定谔方程就可以得到球坐标薛定谔方程。然后代入上述的分成两个部分。

然后两边乘上一个因子就可以把径向部分和角部分分开。径向部分只与 R , r R,r R,r有关,令其等于 l ( l + 1 ) l(l+1) l(l+1);角部分只与 Y , θ , ϕ Y,\theta,\phi Y,θ,ϕ有关,令其等于 − l ( l + 1 ) -l(l+1) l(l+1)

不同基态本征态组合得到同一个状态称为这个状态的简并度(degeneracy)。

Y Y Y可以进一步对两个角分别分成 Y = Θ Φ Y=\Theta\Phi Y=ΘΦ。代入方程,同样是乘上一个因子,分成极角部分和方位角部分。令极角部分等于 m 2 m^2 m2,方位角部分等于 − m 2 -m^2 m2

方位角的方程很好解,可以记为 Φ = e i m ϕ \Phi=e^{im\phi} Φ=eimϕ。由于 ϕ \phi ϕ增减 2 π 2\pi 2π其实是一样的,也就是 Φ ( ϕ ) = Φ ( ϕ + 2 π ) \Phi(\phi)=\Phi(\phi+2\pi) Φ(ϕ)=Φ(ϕ+2π)。这个条件要求 m m m必须是整数。

极角的方程很难解。首先是 Θ = A P l m ( cos ⁡ θ ) \Theta=AP_l^m(\cos \theta) Θ=APlm(cosθ)。这里的 P l m P_l^m Plm是Associated Legendre Function。定义是什么的一个 m / 2 m/2 m/2次方乘上 P l ( x ) P_l(x) Pl(x) x x x ∣ m ∣ |m| m次导。其中 P l P_l Pl是勒让德多项式。 P l P_l Pl是一个 l l l次的多项式,奇偶性与 l l l的奇偶性相同,并且在 1 1 1处总是取 1 1 1

显然,由于 P l P_l Pl l l l次的,ALP又要求 ∣ m ∣ |m| m次导,那么如果 ∣ m ∣ > l |m|>l m>l求出来就永远是 0 0 0,这不满足归一化条件。所以 m , l m,l m,l必须满足 ∣ m ∣ ≤ l |m|\le l ml

这样 Y Y Y就解出来了,再用归一化条件确定系数就行了。归一化了的 Y Y Y称作球谐函数

现在来看径向部分。之前分成YR的假设已经暗含势能V只与半径r的大小有关。

u = r R u=rR u=rR,代入方程得 − ℏ 2 2 m d 2 d r 2 u + V e f f u = E u -\frac{\hbar^2}{2m}\frac{d^2}{dr^2}u+V_{\rm{eff}}u=Eu 2m2dr2d2u+Veffu=Eu

这个形式和薛定谔方程类似。这个方程叫做径向方程(Radial Equation)。除了 V e f f = V + ℏ 2 2 m l ( l + 1 ) r 2 V_{\rm{eff}}=V+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2} Veff=V+2m2r2l(l+1)。正体字母用\rm{XXX}就行。 V e f f V_{\rm{eff}} Veff V V V多的叫Centrifugal Term(项)。

归一化条件是 ∫ ∣ u ∣ 2 d r = 1 \int |u|^2dr=1 u2dr=1

无限深球势阱

a a a里面势能是 0 0 0,外面是 ∞ \infty 。即使是这样的势阱,也能解出答案吗?

外面是 0 0 0,现在解里面。化为 d 2 u d r 2 = ( l ( l + 1 ) r 2 − k 2 ) u \frac{d^2u}{dr^2}=(\frac{l(l+1)}{r^2}-k^2)u dr2d2u=(r2l(l+1)k2)u这里的 k k k和之前无限深势阱里的定义一样。

如果 l l l 0 0 0那就很简单, u = T k ( A , B , r ) u=\mathcal{T}_k(A,B,r) u=Tk(A,B,r)

注意径向波函数 R R R r / u r/u r/u,如果 B B B不是 0 0 0那么当 r → 0 r\to0 r0时就会爆炸。那么 B = 0 B=0 B=0。结果又跟之前一样,只有 A A A。对于 n = 0 , 1 , 2 , ⋯ n=0,1,2,\cdots n=0,1,2,,有 E n 0 E_{n0} En0。其中的 0 0 0表示 l l l

u u u归一化可以得到 A = 2 / a A=\sqrt{2/a} A=2/a 。现在知道了 R R R。再乘上球谐函数 Y 0 0 Y_0^0 Y00就是答案(因为 l = 0 l=0 l=0所以 m m m只能是 0 0 0)。这就是 ψ n 00 \psi_{n00} ψn00。从此也可以看到波函数和三个量有关但能量只和 n , l n,l n,l有关。

对于任意的 l l l,解比较复杂,是 u ( r ) = A r j l ( k r ) + B r n l ( k r ) u(r)=Arj_l(kr)+Brn_l(kr) u(r)=Arjl(kr)+Brnl(kr)。其中 j l j_l jl是球贝塞尔函数, n l n_l nl是球诺埃曼(Neumann)函数。比如 j 0 = s i n ( x ) / x , n 0 = − c o s ( x ) / x j_0=sin(x)/x,n_0=-cos(x)/x j0=sin(x)/x,n0=cos(x)/x

总之,球贝塞尔函数在 0 0 0处有限,但是球诺埃曼函数在 0 0 0处会嘣!的一声爆炸了。那么呢,球诺埃曼函数就只能是 0 0 0了。可惜!所以还是 B = 0 B=0 B=0 u = A r j l ( k r ) u=Arj_l(kr) u=Arjl(kr)

无限深球势阱的边界条件有 R ( a ) = 0 R(a)=0 R(a)=0,那么 j l ( k a ) = 0 j_l(ka)=0 jl(ka)=0不满足是不行的。也就是说, k a ka ka是球贝塞尔函数的零点。SBF是震荡的,所有的SBF都有无数个零点。令人遗憾的是,这个零点很难计算。总之,让 β n l \beta_{nl} βnl j l j_l jl的第 n n n个零点。那么 E n l = ℏ 2 β n l 2 2 m a 2 E_{nl}=\frac{\hbar^2\beta_{nl}^2}{2ma^2} Enl=2ma22βnl2如果第 n n n个零点是 n π n\pi 那就完全是之前的了。

波函数是 ψ n l m ( r , θ , ϕ ) = A n l j l ( β n l r / a ) Y l m ( θ , ϕ ) \psi_{nlm}(r,\theta,\phi)=A_{nl}j_l(\beta_{nl}r/a)Y_l^m(\theta,\phi) ψnlm(r,θ,ϕ)=Anljl(βnlr/a)Ylm(θ,ϕ)

有限深球势阱

l = 0 l=0 l=0的情况和一维的情况差不多,参见量子力学(1)。

氢原子结构

认为氢原子是一个在原点的不动的质子,具有电量 e e e。还有一个很轻的电子,电量 − e -e e,绕着它转。根据库仑定律,势能是 V ( r ) = − e 2 / ( 4 π ϵ 0 r ) V(r)=-e^2/(4\pi\epsilon_0r) V(r)=e2/(4πϵ0r)

把势能代入径向方程,我们的目的就是解出波函数,并确定对应的能量。

显然根据这个 V V V的形式,具有束缚态和散射态。

κ = − 2 m E ℏ \kappa=\frac{\sqrt{-2mE}}{\hbar} κ=2mE 。令 ρ = κ r \rho=\kappa r ρ=κr,且 ρ 0 = m e 2 2 π ϵ 0 ℏ 2 κ \rho_0=\frac{me^2}{2\pi\epsilon_0\hbar^2\kappa} ρ0=2πϵ02κme2。方程化为 d 2 u d ρ 2 = ( 1 − ρ 0 ρ + l ( l + 1 ) ρ 2 ) u \begin{equation}\frac{d^2u}{d\rho^2}=(1-\frac{\rho_0}{\rho}+\frac{l(l+1)}{\rho^2})u\end{equation} dρ2d2u=(1ρρ0+ρ2l(l+1))u

ρ \rho ρ很大的时候, d 2 u d ρ 2 = u \frac{d^2u}{d\rho^2}=u dρ2d2u=u。那么 u = E 1 ( A , B ) ( ρ ) u=\mathcal{E}_1(A,B)(\rho) u=E1(A,B)(ρ)。都说了 ρ \rho ρ很大,不能爆炸,那么 B = 0 B=0 B=0,就是 u = A e − ρ u=Ae^{-\rho} u=Aeρ

ρ \rho ρ很小的时候离心项(centrifugal term)占主导。 d 2 u d ρ 2 = l ( l + 1 ) ρ 2 u \frac{d^2u}{d\rho^2}=\frac{l(l+1)}{\rho^2}u dρ2d2u=ρ2l(l+1)u。通解是 u ( ρ ) = C ρ l + 1 + D ρ − l u(\rho)=C\rho^{l+1}+D\rho^{-l} u(ρ)=Cρl+1+Dρl d u d ρ = C ( l + 1 ) ρ l − D l ρ − l − 1 \frac{du}{d\rho}=C(l+1)\rho^l-Dl\rho^{-l-1} dρdu=C(l+1)ρlDlρl1 d 2 u d ρ 2 = C l ( l + 1 ) ρ l − 1 + D l ( l + 1 ) ρ − l − 2 = l ( l + 1 ) ρ 2 u \frac{d^2u}{d\rho^2}=Cl(l+1)\rho^{l-1}+Dl(l+1)\rho^{-l-2}=\frac{l(l+1)}{\rho^2}u dρ2d2u=Cl(l+1)ρl1+Dl(l+1)ρl2=ρ2l(l+1)u

第二项爆炸,所以 D = 0 D=0 D=0

也可以 u ( ρ ) = ρ l + 1 e − ρ v ( ρ ) u(\rho)=\rho^{l+1}e^{-\rho}v(\rho) u(ρ)=ρl+1eρv(ρ)。这样的 v v v代入方程(1)得……

最后我们假设 v v v可以表示成 ρ \rho ρ的级数,系数是 c j ( j = 0 , 1 , 2 , ⋯   ) c_j(j=0,1,2,\cdots) cj(j=0,1,2,)

代入方程可以解得 c j c_j cj的递推关系。

级数必须在某一级结束,比如 c j m a x + 1 = 0 c_{j_{max}+1}=0 cjmax+1=0。根据递推关系也就是 2 ( j m a x + l + 1 ) − ρ 0 = 0 2(j_{max}+l+1)-\rho_0=0 2(jmax+l+1)ρ0=0

定义主量子数(principal quantum number) n = j m a x + l + 1 n=j_{max}+l+1 n=jmax+l+1。因此 ρ 0 = 2 n \rho_0=2n ρ0=2n

由于 ρ 0 \rho_0 ρ0表示了 κ \kappa κ κ \kappa κ表示了 E E E,所以 ρ 0 \rho_0 ρ0可以表示 E E E。现在用 n n n表示。那就是 E n = w h a t e v e r = E 1 n 2 E_n=whatever=\frac{E_1}{n^2} En=whatever=n2E1

这就是波尔公式。

a a a是波尔半径,等于一坨东西。那么 κ = 1 / a n \kappa=1/an κ=1/an ρ = r / a n \rho=r/an ρ=r/an ρ 0 = 2 / a κ \rho_0=2/a\kappa ρ0=2/

现在我们知道了 R n l ( r ) = 1 r ρ l + 1 e − ρ v ( ρ ) R_{nl}(r)=\frac{1}{r}\rho^{l+1}e^{-\rho}v(\rho) Rnl(r)=r1ρl+1eρv(ρ)。其中 v v v是级数,且次数为 j m a x = n − l − 1 j_{max}=n-l-1 jmax=nl1

最低能量的态,也就是基态(ground state),是 n = 1 n=1 n=1的时候。这个时候,因为 n = j m a x + l + 1 n=j_{max}+l+1 n=jmax+l+1,那么 j m a x j_{max} jmax l l l只能是 0 0 0(因为不能是负数)。进而 m m m也是 0 0 0。所以 E 1 = w h o c a r e s = − ℏ 2 2 m a 2 = − 13.6 ( e V ) E_1=whocares=-\frac{\hbar^2}{2ma^2}=-13.6(\rm{eV}) E1=whocares=2ma22=13.6(eV)。这就是氢原子的结合能(binding energy)。现在 R R R里面只有 v v v的唯一一个系数 c 0 c_0 c0是不确定的,用归一化来确定。再乘上球谐函数。最后得到基态氢原子波函数 ψ = 1 π a 3 e − r / a \psi=\frac{1}{\sqrt{\pi a^3}}e^{-r/a} ψ=πa3 1er/a

用波尔能级公式可以非常简单的求出其它 n n n的能量。 2 2 2以上的态称为激发态(excited state)。根据玻尔公式氢原子能级只与 n n n有关。如果 l = 0 l=0 l=0 v v v就有两项,因为有递推关系,所以都可以用 c 0 c_0 c0表示,那就可以归一化确定。

n = 2 n=2 n=2时,(l,m)的组合可能有(0,0),(1,-1),(1,0),(1,1);
n = 3 n=3 n=3时,(l,m)的组合可能有(0,0),(1,-1),(1,0),(1,1),(2,-2),(2,-1),(2,0),(2,1),(2,2)。
显然能级 E n E_n En的简并度是 n 2 n^2 n2。(简并度就是不同的波函数(本征函数)对应同一个能量(本征值))

v v v可以用关联拉盖尔(Laguerre)多项式和拉盖尔多项式表示,但是这里太小了我写不下。

基态下,电子居然最可能在 r = a r=a r=a处找到。

如果需要时间相关的波函数,乘上 e − i E n t e^{-iE_nt} eiEnt就行了, n n n就是 ψ n \psi_n ψn n n n

氢原子光谱

两个能级之间跃迁,光子频率满足 ν = E γ / h = ( E i n i t − E f i n ) / h = ( − 13.6 e V ) ( 1 / n i 2 − 1 / n f 2 ) / h \nu=E_\gamma/h=(E_{init}-E_{fin})/h=(-13.6eV)(1/n_i^2-1/n_f^2)/h ν=Eγ/h=(EinitEfin)/h=(13.6eV)(1/ni21/nf2)/h

光子波长的导数为 1 / λ = ν / c 1/\lambda=\nu/c 1/λ=ν/c。因此里德伯(Rydberg)常量 R = − 13.6 e V / ( c h ) R=-13.6eV/(ch) R=13.6eV/(ch)

角动量

L = r × p \bm{L}=\bm{r}\times\bm{p} L=r×p

对易算符的常用技巧两条:

  • [ A , B + C ] = [ A , B ] + [ A , C ] [A,B+C]=[A,B]+[A,C] [A,B+C]=[A,B]+[A,C]
  • [ A , B C ] = B [ A , C ] + [ A , B ] C [A,BC]=B[A,C]+[A,B]C [A,BC]=B[A,C]+[A,B]C [ A B , C ] = A [ B , C ] + [ A , C ] B [AB,C]=A[B,C]+[A,C]B [AB,C]=A[B,C]+[A,C]B。左提左,右提右。也就是说多个因子乘在一起的对易子一定可以拆成几个原子对易子乘上什么的和。

[ L x , L y ] = [ y p z , z p x ] + [ z p y , x p z ] = y p x [ p z , z ] + x p y [ z , p z ] = − i ℏ y p x + i ℏ x p y = i ℏ L z [L_x,L_y]=[yp_z,zp_x]+[zp_y,xp_z]=yp_x[p_z,z]+xp_y[z,p_z]=-i\hbar yp_x+i\hbar xp_y=i\hbar L_z [Lx,Ly]=[ypz,zpx]+[zpy,xpz]=ypx[pz,z]+xpy[z,pz]=iypx+ixpy=iLz

既然这两个不对易我们就立刻想到可以算一个不确定度。 σ 2 σ 2 ≥ ( 1 2 i ⟨ L x , L y ⟩ ) 2 = ℏ 2 4 ⟨ L z ⟩ 2 \sigma^2\sigma^2\ge(\frac{1}{2i}\braket{L_x,L_y})^2=\frac{\hbar^2}{4}\braket{L_z}^2 σ2σ2(2i1Lx,Ly)2=42Lz2。也就是说不能同时确定 L x L_x Lx L y L_y Ly

[ L 2 , L x ] = [ L y 2 , L x ] + [ L z 2 , L x ] = L y ( − i ℏ L z ) + ( − i ℏ L z ) L y + i ℏ L z L y + i ℏ L y L z = 0 [L^2,L_x]=[L_y^2,L_x]+[L_z^2,L_x]=L_y(-i\hbar L_z)+(-i\hbar L_z)L_y+i\hbar L_zL_y+i\hbar L_yL_z=0 [L2,Lx]=[Ly2,Lx]+[Lz2,Lx]=Ly(iLz)+(iLz)Ly+iLzLy+iLyLz=0你个杀软又把ihbar搞掉了!!!千万别忘了

向量形式可以写成 [ L 2 , L ] = 0 [L^2,\bm{{L}}]=0 [L2,L]=0

我们知道,如果两玩意儿对易,那么他们共享本征函数。一般我们用 L 2 L^2 L2 L z L_z Lz

升降算符 L ± ≡ L x ± i L Y L_\pm\equiv L_x\pm iL_Y L±Lx±iLY

易知 [ L z , L 土 ] = 士 ℏ L 土 [L_z,L_土]=士\hbar L_土 [Lz,L]=L。然后 L 2 L^2 L2和升降算符对易。并且 [ L 2 , L ± ] = 0 [L^2,L_\pm]=0 [L2,L±]=0

说,如果 f f f L 2 L^2 L2 L z L_z Lz的本征函数,那么 L ± f L_\pm f L±f也是它们的本征函数。 L 2 ( L ± f ) = L ± ( L 2 f ) = L ± ( λ f ) = λ L ± f L^2(L_\pm f)=L_\pm(L^2 f)=L_\pm(\lambda f)=\lambda L_\pm f L2(L±f)=L±(L2f)=L±(λf)=λL±f可见 L ± f L_\pm f L±f对应 L 2 L^2 L2的本征值和 f f f一样。

L z ( L ± f ) = ( L ± L z ± ℏ L ± ) f = L ± μ f ± ℏ L ± f = ( μ ± ℏ ) L ± f L_z(L_\pm f)=(L_\pm L_z\pm \hbar L_\pm)f=L_\pm \mu f\pm \hbar L_\pm f=(\mu\pm \hbar)L_\pm f Lz(L±f)=(L±Lz±L±)f=L±μf±L±f=(μ±)L±f说明 L ± f L_\pm f L±f对应 L z L_z Lz的本征值是 μ ± ℏ \mu\pm \hbar μ±,原来是 μ \mu μ。也就是上升算符增加 ℏ \hbar ,下降算符减少 ℏ \hbar

但是 f f f不能一直上升,一定有最高的一档 f t o p f_{top} ftop满足 L + f t = 0 L_+f_t=0 L+ft=0。我们认为 f t f_t ft L + L_+ L+中的特征值是 ℏ l \hbar l l

L 2 L^2 L2可以用 L z L_z Lz L ± L_\pm L±表示:(复数平方和公式: a 2 + b 2 ± i [ b , a ] = ( a ± i b ) ( a ∓ i b ) a^2+b^2\pm i[b,a]=(a\pm ib)(a\mp ib) a2+b2±i[b,a]=(a±ib)(aib) L 2 = L x 2 + L y 2 + L z 2 = ( L x ± i L y ) ( L x ∓ i L y ) ± i L x L y ∓ i L y L x + L z 2 L^2=L_x^2+L_y^2+L_z^2=(L_x\pm iL_y)(L_x\mp iL_y)\pm iL_xL_y\mp iL_yL_x+L_z^2 L2=Lx2+Ly2+Lz2=(Lx±iLy)(LxiLy)±iLxLyiLyLx+Lz2 = L ± L ∓ ± i [ L x , L y ] + L z 2 = L ± L ∓ ∓ ℏ L z + L z 2 =L_\pm L_\mp\pm i[L_x,L_y]+L_z^2=L_\pm L_\mp\mp\hbar L_z+L_z^2 =L±L±i[Lx,Ly]+Lz2=L±LLz+Lz2

利用 L + f t = 0 L_+f_t=0 L+ft=0,那么 L 2 f t = ( L − L + + ℏ L z + L z 2 ) f t = ( 0 + ℏ 2 l + ℏ 2 l 2 ) f t = ℏ 2 l ( l + 1 ) f t L^2f_t=(L_-L_++\hbar L_z+L_z^2)f_t=(0+\hbar^2 l+\hbar^2l^2)f_t=\hbar^2l(l+1)f_t L2ft=(LL++Lz+Lz2)ft=(0+2l+2l2)ft=2l(l+1)ft。也就是说 L 2 L^2 L2 f t f_t ft的特征值是 ℏ 2 l ( l + 1 ) \hbar^2l(l+1) 2l(l+1)

f f f也不能一直下降,有最低的一档 f b o t t o m f_{\rm{bottom}} fbottom L − f b = 0 L_-f_b=0 Lfb=0

同样,首先让 ℏ l ˉ \hbar\bar l lˉ L z L_z Lz f b f_b fb的本征值。同样计算 L 2 f b = ( L + L − − ℏ L z + L z 2 ) f b = ( − ℏ 2 l ˉ + ℏ 2 l ˉ 2 ) f b = ℏ 2 l ˉ ( l ˉ − 1 ) L^2f_b=(L_+L_--\hbar L_z+L_z^2)f_b=(-\hbar^2\bar l+\hbar^2\bar l^2)f_b=\hbar^2\bar l(\bar l-1) L2fb=(L+LLz+Lz2)fb=(2lˉ+2lˉ2)fb=2lˉ(lˉ1)

我们知道,用升降算符调整的函数下, L 2 L^2 L2的本征值都是一样的。也就是说 l ( l + 1 ) = l ˉ ( l ˉ − 1 ) l(l+1)=\bar l(\bar l-1) l(l+1)=lˉ(lˉ1)。物理学家们看到了都知道这意味着 l ˉ = − l \bar l=-l lˉ=l

除了顶函数和底函数,任何函数, L z L_z Lz的本征值可以表示成 ℏ m \hbar m m。那么 m m m的范围是 [ − l , l ] [-l,l] [l,l]。注意,没有说 m m m l l l是整数,但是 m m m每次跳动的步长是 1 1 1。那么很明显 l l l要么是整数要么是半整数。这一系列本征函数用 f l m f_l^m flm表示。比如 f l l f_l^l fll就是刚才的 f t f_t ft

现在来看 f l m f_l^m flm到底是什么。用动量坐标关系, L = r × ( − i ℏ ∇ ) \bm{L}=\bm{r}\times(-i\hbar\nabla) L=r×(iℏ∇)。球坐标下的Nabla算符是 ∇ = r ^ ( ? P r ) + θ ^ ( 1 / r ) ( ? P θ ) + ϕ ^ ( 1 / r sin ⁡ θ ) ( ? P ϕ ) \nabla=\hat r(?_Pr)+\hat\theta(1/r)(?_P\theta)+\hat\phi(1/r\sin\theta)(?_P\phi) =r^(?Pr)+θ^(1/r)(?Pθ)+ϕ^(1/rsinθ)(?Pϕ)

然后 r = r r ^ \bm{r}=r\hat r r=rr^(好像这里的hat是这个方向的单位向量?),

什么什么。

重要的是, L z = − i ℏ ( ? P ϕ ) L_z=-i\hbar(?_P\phi) Lz=i(?Pϕ)

现在已经能够用极角和方位角表示 L 2 L^2 L2 L z L_z Lz。解出来得到 f l m = Y l m f_l^m=Y_l^m flm=Ylm,球谐函数。也就是说球谐函数是 L 2 L^2 L2 L z L_z Lz的本征函数。

现在可以用 L 2 L^2 L2 r r r表示薛定谔方程。

补充

升降算符作用于本征函数的方程:(简记:m的两项就是之前和之后的m) L ± f l m = ℏ l ( l + 1 ) − m ( m ± 1 ) f l m ± 1 L_\pm f_l^m=\hbar\sqrt{l(l+1)-m(m\pm 1)}f_l^{m\pm 1} L±flm=l(l+1)m(m±1) flm±1

证明:

已知 L ± f = A f m ± 1 L_\pm f=Af^{m\pm 1} L±f=Afm±1

首先 ⟨ f ∣ L + g ⟩ = ⟨ f ∣ ( L x + i L y ) g ⟩ = ⟨ L x f ∣ g ⟩ + ⟨ − i L y f ∣ g ⟩ = ⟨ L − f ∣ g ⟩ \lang f|L_+g\rang=\lang f|(L_x+iL_y)g\rang=\lang L_xf|g\rang+\lang-iL_yf|g\rang=\lang L_-f|g\rang fL+g=f(Lx+iLy)g=Lxfg+iLyfg=Lfg可见升降算符互相为厄米共轭。

根据 L ± L ∓ = ( L x ± i L y ) ( L x ∓ i L y ) = L x 2 + L y 2 ∓ i [ L x , L y ] = L 2 − L z 2 ± ℏ L z L_\pm L_\mp=(L_x\pm iL_y)(L_x\mp iL_y)=L_x^2+L_y^2\mp i[L_x,L_y]=L^2-L_z^2\pm\hbar L_z L±L=(Lx±iLy)(LxiLy)=Lx2+Ly2i[Lx,Ly]=L2Lz2±Lz,可以推出一些东西。

L ± L ∓ f l m = [ ℏ 2 l ( l + 1 ) − ℏ 2 m 2 ± ℏ 2 m ] f l m = ℏ 2 [ l ( l + 1 ) − m ( m ± 1 ) ] f l m L_\pm L_\mp f_l^m=[\hbar^2l(l+1)-\hbar^2m^2\pm\hbar^2m]f_l^m=\hbar^2[l(l+1)-m(m\pm 1)]f_l^m L±Lflm=[2l(l+1)2m2±2m]flm=2[l(l+1)m(m±1)]flm记最右边的 f l m f_l^m flm的系数是 B B B

⟨ L ± L ∓ ⟩ = B ⟨ f ∣ f ⟩ = B \braket{L_\pm L_\mp}=B\braket{f|f}=B L±L=Bff=B ⟨ L ± L ∓ ⟩ = ⟨ L ∓ f ∣ L ∓ f ⟩ = ⟨ A f m ∓ 1 ∣ A f m ∓ 1 ⟩ = ∣ A ∣ 2 \braket{L_\pm L_\mp}=\lang L_\mp f|L_\mp f\rang=\lang A f^{m\mp 1}|A f^{m\mp 1}\rang=|A|^2 L±L=LfLf=Afm1Afm1=A2

所以 A = B A=\sqrt{B} A=B 。(我中间的正负号写对没有?)

自旋

14:44
自旋角动量 S \bm{S} S也是角动量,三个分量之间的对易关系和角动量一样。平方和z分量的谱也是
S 2 ∣ s m ⟩ = ℏ 2 s ( s + 1 ) ∣ s m ⟩ S^2\ket{sm}=\hbar^2s(s+1)\ket{sm} S2sm=2s(s+1)sm
S z ∣ s m ⟩ = ℏ m ∣ s m ⟩ S_z\ket{sm}=\hbar m\ket{sm} Szsm=msm。其中 ∣ s m ⟩ \ket{sm} sm表示一个本征函数或者本征态(其实一般用向量表示)。

升降算符定义一样。有 S ± ∣ s m ⟩ = ℏ s ( s + 1 ) − m ( m ± 1 ) ∣ s ( m ± 1 ) ⟩ S_\pm\ket{sm}=\hbar\sqrt{s(s+1)-m(m\pm 1)}\ket{s(m\pm 1)} S±sm=s(s+1)m(m±1) s(m±1) s s s m m m依然满足 l l l m m m的规则。

基本粒子都有独有而不变的自旋。 π \pi π介子的自旋为 0 0 0。电子为 1 / 2 1/2 1/2。光子为 1 1 1。Delta是 3 / 2 3/2 3/2。引力子是 2 2 2。这个怎么都不会变。不像 l l l可以因受扰动而变。

质子、中子、电子、所有的夸克和所有的轻子的自旋都是 1 / 2 1/2 1/2,所以这个自旋很重要。显然只存在两种 m m m的取值。称 ∣ 1 2 1 2 ⟩ \ket{\frac{1}{2}\frac{1}{2}} 2121Spin Up(上旋),记为 ↑ \uparrow 。反之为下旋 ↓ \downarrow

注意看,这个1×2的矩阵叫做Spinor(旋量/自旋量/旋子)。 χ = [ a b ] = a χ + + b χ − \chi=\begin{bmatrix}a\\b\end{bmatrix}=a\chi_++b\chi_- χ=[ab]=aχ++bχ

s = 1 / 2 s=1/2 s=1/2 S 2 χ = 3 4 ℏ 2 χ S^2\chi=\frac{3}{4}\hbar^2\chi S2χ=432χ。如果 χ \chi χ是1×2的矩阵,那么 S 2 S^2 S2是2×2矩阵的话就再好不过了。按这个式子,毫无疑问 S 2 = 3 4 ℏ 2 I S^2=\frac{3}{4}\hbar^2I S2=432I,其中 I I I是单位矩阵。

同时 S z χ + = 1 2 ℏ χ + S_z\chi_+=\frac{1}{2}\hbar\chi_+ Szχ+=21χ+ S z χ − = − 1 2 ℏ χ − S_z\chi_-=-\frac1 2\hbar\chi_- Szχ=21χ。容易得到 S z = ℏ 2 [ 1 0 0 − 1 ] S_z=\frac\hbar 2\begin{bmatrix}1&0\\0&-1\end{bmatrix} Sz=2[1001]

然后,升降算符的方程说明 S + χ − = ℏ χ + S_+\chi_-=\hbar\chi_+ S+χ=χ+ S − χ + = ℏ χ − S_-\chi_+=\hbar\chi_- Sχ+=χ S + χ + = 0 S_+\chi_+=0 S+χ+=0。底条件同理。

结果就是 S + = ℏ [ [ 0 , 1 ] ; [ 0 , 0 ] ] , S − = ℏ [ [ 0 , 0 ] ; [ 1 , 0 ] ] S_+=\hbar[[0,1];[0,0]],S_-=\hbar[[0,0];[1,0]] S+=[[0,1];[0,0]],S=[[0,0];[1,0]]

S x S_x Sx等都有个因子,令 S x = ℏ 2 σ x S_x=\frac \hbar 2\sigma_x Sx=2σx。得到三个泡利自旋矩阵。
σ x = [ 0 1 1 0 ] σ y = [ 0 − i i 0 ] σ z = [ 1 0 0 − 1 ] \sigma_x=\begin{bmatrix}0&1\\1&0\end{bmatrix}\quad\sigma_y=\begin{bmatrix}0&-i\\i&0\end{bmatrix}\quad\sigma_z=\begin{bmatrix}1&0\\0&-1\end{bmatrix} σx=[0110]σy=[0ii0]σz=[1001]

我们发现自旋角动量的每个分量和其平方都是厄米(共轭转置与自己相等)的,它们也是可观测量。升降算符不是厄米的,它们也不是可观测量。令人安心。

对于不是本征态的一般态(general state),测量 S z S_z Sz结果是上旋的概率是 ∣ a ∣ 2 |a|^2 a2,下旋同理。两个概率加起来必须是 1 1 1。就是说旋量必须归一化

我们还可以测量 S x S_x Sx等。我们已经知道 S x S_x Sx是什么矩阵,那就可以求出它的特征值和特征向量,然后让一般态向这两个本征向量分解。然后算概率。同样有归一化条件。这个归一化条件和刚才那个等价。

磁场中的电子

不知道

角动量的和

我写的东西没保存。
17:48

两个粒子有角动量 S 1 \bm{S}_1 S1 S 2 \bm{S}_2 S2,它们的和是 S \bm{S} S。状态分别是 χ 1 \chi_1 χ1 χ 2 \chi_2 χ2。那么合成的状态就是 χ 1 χ 2 \chi_1\chi_2 χ1χ2

S z χ 1 χ 2 = ( S z 1 χ 1 ) χ 2 + χ 1 ( S z 2 χ 2 ) = ℏ ( m 1 + m 2 ) χ 1 χ 2 = ℏ m χ S_z\chi_1\chi_2=(S_{z1}\chi_1)\chi_2+\chi_1(S_{z2}\chi_2)=\hbar(m_1+m_2)\chi_1\chi_2=\hbar m\chi Szχ1χ2=(Sz1χ1)χ2+χ1(Sz2χ2)=(m1+m2)χ1χ2=mχ。新的自选角量子数就是两个的和。

可以求得 S − ( ↑ ↑ ) = ℏ ( ↓ ↑ + ↑ ↓ ) S_-(\uparrow\uparrow)=\hbar(\downarrow\uparrow+\uparrow\downarrow) S(↑↑)=(↓↑+↑↓)。不同来源的东西互相不作用。

两个spin-1/2的粒子合起来的s有可能是1也可能是0。

可以用暴算法求每个合成态(上上、上下、下上、下下)处 S 2 S^2 S2的特征值。

s 1 s_1 s1 s 2 s_2 s2合成的 s s s范围是 ∣ s 1 − s 2 ∣ ≤ s ≤ ( s 1 + s 2 ) |s_1-s_2|\le s\le(s_1+s_2) s1s2s(s1+s2),步长为 1 1 1。对于每种可能的 s s s又有多种 m = m 1 + m 2 m=m_1+m_2 m=m1+m2的组合。对于确定的 m m m s m sm sm状态是可能状态组合乘上CG系数的和。CG系数除了可以在已知 s s s的情况下工作,还可以在已知 m 1 m_1 m1 m 2 m_2 m2的情况下工作(不知道 s s s)。

S − ∣ 33 ⟩ = ( S − 1 + S − 2 ) ( ∣ 22 ⟩ ∣ 11 ⟩ ) = ( S − ∣ 22 ⟩ ) ∣ 11 ⟩ + ∣ 22 ⟩ ( S − ∣ 11 ⟩ ) = ℏ 6 − 2 ∣ 21 ⟩ ∣ 11 ⟩ + ∣ 22 ⟩ ℏ 2 − 0 ∣ 10 ⟩ = ℏ ( 2 ∣ 21 ⟩ ∣ 11 ⟩ + 2 ∣ 22 ⟩ ∣ 10 ⟩ ) \begin{aligned}S_-|33\rang&=(S_{-1}+S_{-2})(|22\rang|11\rang)\\&=(S_-|22\rang)|11\rang+|22\rang(S_-|11\rang)\\&=\hbar\sqrt{6-2}|21\rang|11\rang+|22\rang\hbar\sqrt{2-0}|10\rang\\&=\hbar(2|21\rang|11\rang+\sqrt 2 |22\rang|10\rang)\end{aligned} S∣33=(S1+S2)(∣22∣11⟩)=(S∣22⟩)∣11+∣22(S∣11⟩)=62 ∣21∣11+∣2220 ∣10=(2∣21∣11+2 ∣22∣10⟩)这里的 2 2 2 2 \sqrt 2 2 要平方之后正则化。结果就是 ∣ 32 ⟩ |32\rang ∣32来自21+11的概率是2/3,来自22+10的概率是1/3。CG系数就是这么求的。

S − ∣ 32 ⟩ = S − ( 6 3 ∣ 21 ⟩ ∣ 11 ⟩ + 3 3 ∣ 22 ⟩ ∣ 10 ⟩ ) = ℏ [ 6 3 ( 6 − 0 ∣ 20 ⟩ ∣ 11 ⟩ + ∣ 21 ⟩ 2 − 0 ∣ 10 ⟩ ) + 3 3 ( 4 ∣ 21 ⟩ ∣ 10 ⟩ + ∣ 22 ⟩ 2 + 0 ∣ 1 1 ˉ ⟩ ) ] = ℏ [ 2 ∣ 20 ⟩ ∣ 11 ⟩ + 2 ∣ 21 ⟩ ∣ 10 ⟩ + 2 3 3 ∣ 21 ⟩ ∣ 10 ⟩ + 2 ∣ 22 ⟩ ∣ 1 1 ˉ ⟩ ] \begin{aligned}S_-|32\rang&=S_-(\frac{\sqrt 6} 3|21\rang\ket{11}+\frac{\sqrt 3}{3}|22\rang|10\rang)\\&=\hbar[\frac{\sqrt 6}{3}(\sqrt{6-0}|20\rang|11\rang+|21\rang\sqrt{2-0}|10\rang)+\frac{\sqrt 3}{3}(\sqrt{4}|21\rang|10\rang+|22\rang\sqrt{2+0}|1\bar1\rang)]\\&=\hbar[2|20\rang|11\rang+\sqrt 2|21\rang|10\rang+\frac{2\sqrt 3}{3}|21\rang|10\rang+\sqrt 2|22\rang|1\bar 1\rang]\end{aligned} S∣32=S(36 ∣2111+33 ∣22∣10⟩)=[36 (60 ∣20∣11+∣2120 ∣10⟩)+33 (4 ∣21∣10+∣222+0 ∣11ˉ⟩)]=[2∣20∣11+2 ∣21∣10+323 ∣21∣10+2 ∣22∣11ˉ⟩]

4+2+4/3+2=28/3。全部除以归一化因子,概率分别是3/7、3/14、1/7、3/14。 你瞎了看不见中间两项是一样的?

我是没看出来该怎么计算。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值