组合
myjs999
审核未通过
展开
-
容斥原理
经典容斥设有一些集合为S1,S2,⋯ ,SnS_1,S_2,\cdots,S_nS1,S2,⋯,Sn,则经典容斥说明∣S1∪S2∪⋯∪Sn∣=∑t=1n(−1)t−1∑T是长为t的1,2,⋯ ,n的子序列∣ST1∩ST2∩⋯∩STt∣|S_1\cup S_2\cup\cdots\cup S_n|=\sum_{t=1}^n(-1)^{t...原创 2019-04-27 18:18:48 · 325 阅读 · 0 评论 -
组合基础2 第一类斯特林数 第二类斯特林数 基础部分
记xn‾=x(x+1)(x+2)⋯(x+n−1)x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)xn=x(x+1)(x+2)⋯(x+n−1),xn‾=x(x−1)(x−2)⋯(x−n+1)x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)xn=x(x−1)(x−2)⋯(x−n+1)。第一类斯特林数定义为xn‾x^{\over...原创 2019-04-21 18:59:40 · 436 阅读 · 0 评论 -
组合基础1 组合数 二项式定理 卡特兰数 生成函数基础
组合数(nm)=n!m!(n−m)!\binom{n}{m}=\frac{n!}{m!(n-m)!}(mn)=m!(n−m)!n!可用Lucas定理和扩展Lucas计算。同时也是一个mmm次多项式,可用多项式算法计算。插板数将nnn个无区别的人分为mmm个无区别的可空组有(n+m−1n)\binom{n+m-1}{n}(nn+m−1)种方法。二项式定理(a+b)n=∑i=0n(n...原创 2019-04-21 17:36:48 · 1389 阅读 · 0 评论