神经网络数据量多少合适,神经网络需要的数据量

数据少合适用卷积神经网络进行训练测试吗

谷歌人工智能写作项目:小发猫

在没有大量数据的情况下怎样在神经网络中构造数据,以BP神经网络为例,

神经网络 深度学习,神经网络深度学习版

你可以用随机数产生神经网络的训练和测试数据如:下面是产生范围在0.2~2的150*4的矩阵,前三列为输入数据,第四列为输出数据M=random('unif',0.2,2,150,4);p1=M(1:125,1:3);t1=M(1:125,4);p2=M(126:150,1:3);t2=M(126:150,4);p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);a=10;%设置隐层节点数net=newff(minmax(pn),[a,1],{'tansig','purelin'});net.trainParam.epochs=500;=0.1;=10;net=init(net);net=train(net,pn,tn);。

神经网络优缺点,

优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。

预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。

寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。

扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。

深度学习(deep learning)在训练数据较少时的训练效果如何?

不比一般的学习方法好。深度学习基于深层神经网络算法,学习过程中的监督性行为较少,模型收敛较慢,学习到的特征的精度依靠的是大规模训练数据。

所以,在训练数据较少的情况下,采用人工特征和向量机或浅层神经网络效果较好。

200组数据可以训练神经网络吗

神经网络的数据量多少比较合适

Matlab小问题 神经网络能求极值吗

可以啊,神经网络其实就是一种数值拟合的方法,其意义和泰勒级数展开实际上是一样的,只要你正确的拟合出了数据的规律是可以求得极大值的,而且神经网络的神经元函数都是非常好球微分的,所以可以用现在很多流行的数值方法,求极大值。

这里对于一维拟合需要使用小波函数,高维需要脊波函数,PID神经元网络可用于动态网络的无导师学习。当然对于化工领域一些问题由于样本非常有限无法找到数据的正确规律,所以可能存在预报困难的问题。

最近在研究回归分析,感觉用神经网络来做这个是不是不太合适,因为最终得到的模型在数学上不是很好表达?

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值