Hive新增/变更字段后,Hive metastore与Hive tblproperties缓存的spark schema不一致处理

本文介绍了在Hive和Spark环境中遇到的数据不一致问题,包括如何创建测试表、插入数据、查询以及通过Hive新增字段。当通过Hive更新表结构后,Spark查询会报元数据不一致的警告。解决方法是更新Hive的TBLPROPERTIES,确保Spark和Hive的表元数据同步。最后,更新TBLPROPERTIES后,再次查询,告警消失,实现了元数据的一致性。
摘要由CSDN通过智能技术生成

一、创建测试表

CREATE TABLE `ittemp`.`zxh_test1` (

`col1` VARCHAR(64) COMMENT '测试字段1',

`col2` INT COMMENT '测试字段2',

`col3` DECIMAL(16,2) COMMENT '测试字段3'

)

stored as parquet

PARTITIONED BY (`dt` varchar(8) comment '分区')

COMMENT '测试表1';

二、插入测试数据

insert overwrite `ittemp`.`zxh_test1` partition(dt='20220707') values ('a',1,1.1);

三、spark查询测试

select * from `ittemp`.`zxh_test1`;

四、通过hive新增字段

alter table `ittemp`.`zxh_test1` add columns ( `COL4` VARCHAR(40) comment '测试字段4');

五、spark查询测试(报hive metastore不一致)

select * from `ittemp`.`zxh_test1`;

六、通过hive更新TBLPROPERTIES

1、通过hive执行show create table `ittemp`.`zxh_test1`查看tblproperties信息

注:一般关注'spark.sql.sources.schema.part.0'参数值,当表字段过多时,可能存在 'spark.sql.sources.schema.part.1'、'spark.sql.sources.schema.part.2'等多个,需要关注涉及更新的字段信息在哪个参数里

2、 更新tblproperties值

alter table `ittemp`.`zxh_test1` set TBLPROPERTIES

(

'spark.sql.sources.schema.part.0'='{"type":"struct","fields":[{"name":"col1","type":"varchar(64)","nullable":true,"metadata":{"comment":"测试字段1"}},{"name":"col2","type":"integer","nullable":true,"metadata":{"comment":"测试字段2"}},{"name":"col3","type":"decimal(16,2)","nullable":true,"metadata":{"comment":"测试字段3"}},{"name":"col4","type":"varchar(40)","nullable":true,"metadata":{"comment":"测试字段4"}},{"name":"dt","type":"varchar(8)","nullable":true,"metadata":{"comment":"分区"}}]}'

);

七、再次通过spark查询,hive metastore不一致告警消失

select * from `ittemp`.`zxh_test1`;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值