tarjan算法详解

如果两个顶点可以相互通达,则称两个顶点 强连通 (strongly connected)。如果 有向图 G的每两个顶点都 强连通 ,称G是一个 强连通图 强连通图 有向图的极大强连通子图,称为 强连通分量 (strongly connected components)。
下图中,子图{1,2,3,4}为一个 强连通分量 ,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
Tarjan算法是用来求有向图的强连通分量的。求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求 双连通分量 的Tarjan算法。
Tarjan算法是基于对图 深度优先搜索 的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的 节点 加入一个 堆栈 ,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义 DFN (u)为节点u搜索的次序编号( 时间戳 ),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个 强连通分量
接下来是对算法流程的演示。
从节点1开始DFS,把 遍历 到的节点加入栈中。搜索到节点u=6时, DFN [6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个 强连通分量
返回节点3,继续搜索到节点4,把4加入 堆栈 。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个 连通分量 {1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个 强连通分量 {1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次 堆栈 ,每条边也只被访问了一次,所以该算法的 时间复杂度 为O(N+M)。
下面是伪代码:
tarjan(u)
{
     DFN[u]=Low[u]=++Index //为节点u设定次序编号和Low初值
     Stack.push(u) //将节点u压入栈中
     for  each(u,v) in E //枚举每一条边
         if  (visnotvisted) //如果节点v未被访问过
             tarjan(v) //继续向下找
             Low[u]=min(Low[u],Low[v])
         else  if  (vinS) //如果节点v还在栈内
                 Low[u]=min(Low[u],DFN[v])
     if  (DFN[u]==Low[u]) //如果节点u是强连通分量的根
     repeat{
         v=S.pop //将v退栈,为该强连通分量中一个顶点
         printv
         until(u==v)
     }
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值