贴图来自网易云课堂。图像通道nc与滤波器通道是一样的,nc'表示提取图像的nc'个特征。例如垂直特征滤波器
[1 0 -1]
[1 0 -1]
[1 0 -1]
(这里只写了下二维的filter)
一种卷积神经网络实例:
在每层卷积层后接上池化层,池化层的超参数是人为设定的,不是训练出来的,一般可以设置为别人文献里的训练效果较好的超参数。最后通过一个全连接层。图例中,FC3层为一个120*400的权重矩阵。
贴图来自网易云课堂。图像通道nc与滤波器通道是一样的,nc'表示提取图像的nc'个特征。例如垂直特征滤波器
[1 0 -1]
[1 0 -1]
[1 0 -1]
(这里只写了下二维的filter)
一种卷积神经网络实例:
在每层卷积层后接上池化层,池化层的超参数是人为设定的,不是训练出来的,一般可以设置为别人文献里的训练效果较好的超参数。最后通过一个全连接层。图例中,FC3层为一个120*400的权重矩阵。