*博客头图：

RGB颜色，例如：#AFAFAF

Hover：

RGB颜色，例如：#AFAFAF

RGB颜色，例如：#AFAFAF

# 无名

• 博客(5)
• 资源 (3)
• 收藏
• 关注

#### 原创 搜索背后的奥秘——浅谈语义主题计算

2011-12-31 12:06:28 652

#### 原创 算法中的一个模式：栈式遍历

2010-01-28 23:57:00 1330

#### 原创 一类动态规划的四边形优化

2010-01-08 00:22:00 2547 6

#### 原创 短小精悍的线性时间素数筛法

2010-01-02 23:40:00 7843 4

#### 原创 n皇后问题的解决 （QS2算法）

n皇后问题的解决 （QS2算法）     8皇后问题是一个广为人知的问题：将8个皇后放在8×8的棋盘上，皇后之间不能互相攻击，求各种放法。更一般的，把8换成n，其解法个数是随n成几何级增长的，因此程序运行时间也是几何级别的。现在我们关注这样一个问题，既然不能很快的把所有解都枚举出来，那么我们能不能很快的求出一个解来呢？这就是n皇后问题。    有人说，我就用纯搜索来搜第一个解，会不会快

2006-12-27 15:47:00 3092 3

#### Algorithms of the Intelligent Web

Web 2.0 applications are best known for providing a rich user experience, but the parts you can't see are just as important—and impressive. Many Web 2.0 applications use powerful techniques to process information intelligently and offer features based on patterns and relationships in the data that couldn't be discovered manually. Successful examples of these Algorithms of the Intelligent Web include household names like Google Ad Sense, Netflix, and Amazon. These applications use the internet as a platform that not only gathers data at an ever-increasing pace but also systematically transforms the raw data into actionable information. Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. You'll learn how to build Amazon- and Netflix-style recommendation engines, and how the same techniques apply to people matches on social-networking sites. See how click-trace analysis can result in smarter ad rotations. With a plethora of examples and extensive detail, this book shows you how to build Web 2.0 applications that are as smart as your users.

2011-03-06

#### How to Think About Algorithms

This textbook, for second- or third-year students of computer science, presents insights, notations, and analogies to help them describe and think about algorithms like an expert, without grinding through lots of formal proof. Solutions to many problems are provided to let students check their progress, while class-tested PowerPoint slides are on the web for anyone running the course. By looking at both the big picture and easy step-by-step methods for developing algorithms, the author guides students around the common pitfalls. He stresses paradigms such as loop invariants and recursion to unify a huge range of algorithms into a few meta-algorithms. The book fosters a deeper understanding of how and why each algorithm works. These insights are presented in a careful and clear way, helping students to think abstractly and preparing them for creating their own innovative ways to solve problems.

2010-03-29