联播大业王恒:五招防止信用卡欺诈

不要密码和个人信息关联

目前,自己和家人的生日,身份证号码,手机号码是最常用和最容易破解的密码组合,应该完全消除使用。随着银行卡的密码,网上银行的密码查询,支付密码不应设置相同的。

发生欺诈银行或将赔偿损失

如果持卡人找到你的信用卡丢失,应立即拨打有关银行信用卡客户服务热线电话报告在规定的时间内,然后点向官方报告的写作。中国工商银行信用卡48小时内报告的第一个电话后被盗挂失后,持卡人可以反馈到人工热线的欺诈性付款。如果发现被盗,银行将在返回持卡人的费用。

尽量选择正规的商户

现在使用信用卡可以在实体店不仅消耗,也可以直接信用卡在网上购物,非常方便。但在购买前应选择相对较大,值得信赖的名片。信用卡也是一个磁条卡,这种磁条卡里面的信息很容易被复制,卡不要让卡的视线,防止别人窃取磁信息特殊器械的使用,“克隆”相同的信用卡欺诈。

短信,电子邮件可以监控账号

现在很多信用卡被盗的东西是不知情的人自己做的。持卡人只能在你的账单收据或主动请教比尔发现账号被盗刷,很被动。它可以监控银行信用卡账户监控。

不要相信 ATM机的各种纸通知

另外要注意保护自己的银行卡和密码的安全使用ATM机取款,一定不要相信,各种类型的纸公告贴在ATM机。因为如果银行需要通过这些措施都没有注意到,而且会直接将通知内容到ATM显示器。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值