
数据挖掘(Data Mining)
良缘白马
IT行业苟且偷生的了三年的程序猿.
展开
-
数据挖掘十大经典算法原理
数据挖掘十大经典算法原理1. Apriori算法Apriori是一种关联规则的频繁集算法,其核心思想是通过候选集生成金额情节向下检测两个阶段来挖掘频繁集。它使用支持度寻找频繁集。使用置信度确定强关联规则。2. KNN算法KNN算法的主要思想是计算每个训练数据到待分类元组的距离,取和待分类元组距离最近的k个训练数据,k个数据中哪个类别的占多数,则该待测元组就属于哪个类别。3. C4.5算法...原创 2019-11-24 17:40:54 · 2431 阅读 · 1 评论 -
数据挖掘十大经典算法之--ID3介绍
数据挖掘十大经典算法之–ID31.算法介绍ID3是Quinlan提出的一个著名的决策树生成方法。ID3的基本概念如下:1.决策树中的每一个非叶子节点对应着一个非类别属性,树枝代表这个属性的值,一个叶子结点代表从树根到叶子结点之间的路径对应的记录所属类别的属性值。2.每一个非叶子结点都将与属性中具有最大信息量的非类别属性相关联。3.采用信息增益来选择出能够最好的将样本分类的属性。2.信...原创 2019-11-21 09:19:45 · 1484 阅读 · 0 评论 -
数据挖掘算法FP-Tree的实现---java
数据挖掘算法FP-tree算法的实现1.算法简介FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联...原创 2019-11-14 08:43:22 · 1197 阅读 · 1 评论 -
数据挖掘算法Apriori的实现
数据挖掘算法Apriori算法的实现1.算法简介Apriori算法是第一个关联规则挖掘算法,也是最经典的算法。它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接(类矩阵运算)与剪枝(去掉那些没必要的中间结果)组成。该算法中项集的概念即为项的集合。包含K个项的集合为k项集。项集出现的频率是包含项集的事务数,称为项集的频率。如果某项集满足最小支持度,则称它为频繁项集。2主要...原创 2019-11-14 08:29:52 · 794 阅读 · 0 评论 -
ID3算法实现西瓜好坏和天气影响出行的算法
1.id3算法介绍ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。2.优点*ID3算法避免了搜索不完整假设空间的一个主要风险:假设空间可能不包含目标函数。*ID3算法在搜索的每一步都使用当前的所...原创 2019-11-07 09:07:46 · 1706 阅读 · 0 评论