需要深度学习的 10 个应用

本文探讨了深度学习在恢复黑白图像色彩、实时人物姿势分析、行为分析、语言翻译、能源潜力预测、游戏AI、语音生成、人口统计预测和艺术创作等领域的实际应用,强调了人工智能技术的现状与未来发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将这篇文章视为一个诱人的花絮——一个开胃菜,可以激发你进一步探索深度学习世界的兴趣。
在某些情况下,这些深度学习应用已经很常见。您今天可能至少使用了其中的一个,而且很可能不止一个。尽管该技术已开始被广泛使用,但这实际上只是一个开始。我们正处于起步阶段,而人工智能在这一点上实际上还很不成熟。

本文不讨论杀手机器人、反乌托邦的未来、人工智能的疯狂,或您可能在电影中看到的任何耸人听闻的场景。您在此处找到的信息是关于现实生活中的现有 AI 应用程序,您今天可以与之交互。

深度学习可用于恢复黑白视频和图片的色彩

您可能有一些家庭成员或特殊事件的黑白视频或图片,您希望看到彩色。颜色由三个元素组成:色调(实际颜色)、值(颜色的暗度或明度)和饱和度(颜色的强度)。奇怪的是,许多艺术家都是色盲,并在他们的创作中大量使用色彩价值。因此,缺少色调(黑白艺术所缺乏的元素)并不是世界末日。恰恰相反,一些艺术家认为这是一种优势。
当以黑白方式查看某些内容时,您会看到值和饱和度,但看不到色调。着色是重新添加色调的过程。艺术家通常使用精心挑选的单个颜色来执行此过程。然而,人工智能已经使用卷积神经网络 (CNN) 自动化了这一过程。

深度学习可以实时近似人物姿势

人物姿势不会告诉您视频流中是谁,而是告诉您视频流中有哪些人的元素。例如,使用人物姿势可以告诉您该人物的肘部是否出现在视频中以及它出现在哪里。本文将详细介绍整个可视化技术的工作原理。事实上,您可以通过第一种情况下一个人和第二种情况下三个人的简短动画来了解系统是如何工作的。

人姿可以有各种有用的目的。例如,您可以使用一个人的姿势来帮助人们改善各种运动的体型——从高尔夫到保龄球。一个人的姿势也可以使新型视频游戏成为可能。想象一下,能够在没有通常的各种笨重装备的情况下跟踪一个人在比赛中的位置。从理论上讲,您可以使用人物姿势来执行犯罪现场分析或确定某人犯罪的可能性。

姿势检测的另一个有趣应用是用于医疗和康复目的。由深度学习提供支持的软件可以告诉您是否正确地进行锻炼并跟踪您的进步。这种应用程序可以通过在您不在医疗机构时照顾您来支持专业康复师的工作(一项称为远程康复的活动)。

深度学习可以进行实时行为分析

行为分析比人姿势分析的作用更进一步。当你进行行为分析时,问题仍然不是谁的问题,而是如何做的问题。这种特殊的 AI 应用程序会影响供应商设计产品和网站的方式。像 Amplitude 这样的文章不遗余力地充分定义和表征行为分析的使用。在大多数情况下,行为分析可以帮助您了解产品设计师希望您遵循的流程与您实际使用的流程不匹配。
行为分析在生活的其他领域也发挥着作用。例如,行为分析可以帮助医学界人士识别患有特定疾病(如自闭症)的人的潜在问题,并帮助患者克服这些问题。行为分析还可以帮助体育教师向学生展示如何磨练他们的技能。您可能还会看到它在法律界被用于帮助确定动机。(内疚是显而易见的,但一个人为什么做某事对于公平地纠正不受欢迎的行为至关重要。

深度学习可用于翻译语言

互联网创造了一个环境,可以让你不知道你真正在和谁说话,那个人在哪里,有时甚至不知道这个人什么时候在和你说话。然而,有一件事没有改变:当双方不说共同语言时,需要将一种语言翻译成另一种语言。在少数情况下,误译可能是幽默的,假设双方都有幽默感。
然而,误译也导致了各种严重后果,包括战争。因此,尽管翻译软件在互联网上非常容易获得,但仔细选择使用哪种产品也很重要。这些应用程序中最受欢迎的应用程序之一是谷歌翻译,但还有许多其他应用程序可用,例如 DeepL。据《福布斯》报道,机器翻译是人工智能擅长的一个领域。

翻译应用程序通常依赖于双向递归神经网络 (BRNN)。您不必创建自己的 BRNN,因为您有许多现有的 API 可供选择。例如,您可以使用该库获取对 Google Translate API 的 Python 访问权限。关键是,翻译可能是更流行的深度学习应用程序之一,许多人甚至不假思索地使用它。

深度学习可用于估计太阳能节能潜力

除非有很多其他人也在使用它,否则很难确定太阳能是否真的在您所在的位置工作。此外,更难知道您可能享受到的储蓄水平。当然,如果太阳能不能满足您的使用目标,您就不想安装太阳能,这实际上可能不包括长期成本节约(尽管通常确实如此)。一些深度强化学习项目现在可以帮助您消除对太阳能的猜测,包括 Project Sunroof。幸运的是,您还可以在 Python 应用程序中获得对此类预测的支持。

人工智能可以在电脑游戏中击败人

人工智能与人类的竞争继续吸引着人们的兴趣。从在国际象棋中获胜到在围棋中获胜,人工智能似乎已经变得无敌——至少在一场比赛中是无敌的。与人类不同,人工智能是专业的,能够在围棋中获胜的人工智能不太可能在国际象棋中表现出色。即便如此,2017年通常被誉为人类在游戏中超越人工智能的终结的开始。当然,比赛已经持续了一段时间,你可能会发现人工智能赢得的比赛远远早于2017年。事实上,一些消息来源将围棋获胜的日期早在2015年10月。《有趣的工程》上的文章描述了人工智能获胜的其他11次。
问题在于定制创建一个可以赢得特定游戏的 AI,并意识到在专注于该游戏时,AI 可能在其他游戏中表现不佳。仅为一款游戏构建 AI 的过程可能看起来很困难。本文介绍了如何构建一个简单的国际象棋 AI,它实际上不会击败国际象棋大师,但可以与中级棋手一起做得很好。

然而,现在说人们已经退出游戏实际上还为时过早。未来,人们可能会用不止一款游戏与人工智能竞争。这种比赛的例子已经比比皆是,例如在铁人三项比赛中表演的人,该比赛由三项体育赛事组成,而不是一项。然后,竞争将变成灵活性之一:人工智能不能简单地蹲下来只学习一种游戏,因此人类将具有灵活性优势。这种人工智能的使用表明,人类和人工智能在未来可能必须合作,人工智能专注于特定任务,而人类则提供执行所有必需任务所需的灵活性。 

深度学习可用于生成语音

你的车可能已经和你说话了;现在,许多汽车经常与人们交谈。奇怪的是,声音生成通常非常好,以至于很难将生成的声音与真实的声音区分开来。一些文章谈到了寻找听起来非常真实的计算机声音的体验如何变得越来越普遍。现在,这个问题引起了足够的关注,许多呼叫中心告诉你,你是在和电脑而不是人说话。
尽管呼叫输出依赖于脚本响应,从而可以生成具有极高置信度的响应,但语音识别的执行难度有点大(但它已经有了很大的改进)。要成功使用语音识别,您通常需要将输入限制为特定的关键术语。通过使用语音识别旨在理解的关键字,可以避免用户重复请求的需要。这种对特定术语的需求表明你正在与计算机交谈——只需询问一些意想不到的东西,计算机就不知道该如何处理它。

实现您自己的语音系统的简单方法是依赖现有的 API,例如 Cloud Speech to Text。当然,您可能需要一些可以自定义的东西。在这种情况下,使用 API 将被证明是有帮助的。本文介绍如何使用 Python 构建自己的基于语音的应用程序。


深度学习可用于预测人口统计数据

人口统计学,即那些按某些特征对人们进行分组的重要或社会统计数据,一直是艺术和科学的一部分。您可以找到有关让计算机为客户(或潜在客户)生成人口统计数据的任意数量的文章。人口统计学的使用范围很广,但你会看到它们被用于预测特定群体将购买哪种产品(与竞争对手的产品相比)。人口统计学是对人们进行分类,然后根据他们的群体关联预测他们的一些行动的重要手段。以下是您在收集人口统计数据时经常看到的 AI 引用的方法:


历史的:根据以前的操作,AI 会概括您将来可能执行的操作。
当前活动:根据您现在执行的操作以及可能的其他特征(例如性别),计算机会预测您的下一步操作。
特性:根据定义您的属性,例如性别、年龄和您居住的地区,计算机会预测您可能做出的选择。

你可以找到关于人工智能预测能力的文章,这些文章看起来好得令人难以置信。例如,这篇 Medium 文章说,人工智能现在可以仅根据你的名字来预测你的人口统计数据。该文章中的公司 Demodrafy 声称仅根据姓名提供性别、年龄和文化亲和力。尽管该网站声称它是 100% 准确的,但这个统计数据极不可能,因为有些名字是性别模糊的,例如 Renee,而另一些名字在某些国家/地区被分配到一种性别,而在其他国家/地区则被分配到另一种性别。是的,人口统计预测可以起作用,但在相信这些网站告诉您的一切之前要小心。

如果您想尝试人口统计预测,可以在线找到许多 API。例如,DeepAI API 承诺帮助您根据视频中一个人的外表预测年龄、性别和文化背景。每个在线 API 都具有专业性,因此您需要在选择 API 时着眼于您可以提供的输入数据类型。


人工智能可以从真实世界的图片中创作艺术

深度学习可以使用真实世界图片的内容和现有的风格母版来创建两者的组合。事实上,使用这种方法生成的一些艺术品在拍卖场上拍出了高价。你可以找到关于这种特殊艺术世代的各种文章,比如这篇《连线》文章。
然而,即使图片很适合挂在墙上,你可能想制作其他类型的艺术作品。例如,您可以使用 Smoothie 3-D 等产品创建图片的 3D 版本。这与创作雕塑不同;相反,您使用 3D 打印机来构建图片的 3D 版本。查看可以执行的实验,了解该过程的工作原理。

人工智能的输出也不需要由视觉内容组成。例如,深度学习使您能够根据图片内容创建音乐。这种艺术形式使AI使用的方法更加清晰。人工智能将它不理解的内容从一种形式转换为另一种形式。作为人类,我们看到并理解这种转变,但计算机看到的只是使用其他人创建的智能算法进行处理的数字。

深度学习可用于预测自然灾害

只要有人和自然灾害,人们就一直在试图预测自然灾害。没有人愿意成为地震、龙卷风、火山爆发或任何其他自然灾害的一部分。在这种情况下,能够快速逃脱是首要考虑因素,因为人类还不能很好地控制环境来防止任何自然灾害。
深度学习提供了寻找极其微妙的模式的方法,这些模式使人类难以置信。这些模式可以帮助预测自然灾害。软件可以预测任何灾难,这一事实简直令人惊叹。但是,本文警告说,完全依赖此类软件将是一个错误。

过度依赖技术是一个永恒的主题,所以不要感到惊讶,深度学习在预测自然灾害方面也不够完美。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新华

感谢打赏,我会继续努力原创。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值