量子计算机将能够做什么?

量子计算的全部优势在于,它将执行某些特定的计算机算法,比我们今天使用的经典计算机快得多。

要使这些非常复杂的计算机工作还有很长的路要走,但即使不深入研究细节,我们也可以描述量子计算将非常非常擅长的事情类型。我们可以给出一个大致的想法,即哪些改进可能早晚可用。

显示 IBM 量子计算处理器的照片

IBM 的量子计算处理器

一式三份的思考

量子计算应用分为三大类。从这三个角度检查您尝试完成的每项任务很有用。将量子计算应用于现实世界的问题是一项创造性的任务,尤其是在早期,使用多种观点只会有所帮助。

以下是三种方法:

  • 模拟:在模拟中,量子比特(相干物质的捕获位)模仿其他相干物质,例如分子中可能成为医学上有用药物的单个原子。模拟可以说是量子计算最自然的契合,因为量子力学支配着自然法则。
  • 优化:一组量子比特可以用作一种计算炉,可以引导它产生一个非常好的(但不一定是完美的)问题解决方案。结果可能是正确的答案,也可能是接近正确的答案。(一个非常好的路线规划或投资问题的解决方案可能会为你节省或赚很多钱,即使这不是最好的答案。
  • 计算:从概念上讲,这种方法最像我们都习惯的经典计算问题解决方式。在计算中,量子比特被组合成逻辑门,组成一个通用计算机。当用作逻辑门时,量子比特可以解决任何可以想象的问题,量子通用计算机可以比今天的计算机更快地解决一些重要问题——这也符合“通用计算机”的描述——但在某些问题上几乎停滞不前。

我们可以将这三类量子计算应用视为不同类型的数学问题。仿真需要求解微分方程;优化需要组合优化;计算需要解决线性代数中的复杂问题,并且涉及大量的矩阵数学。

机器学习中使用的特征和用于操作基于门的量子计算机的量子比特的布洛赫球的操作都表示为向量,因此计算方法很容易用于机器学习。(尽管优化也可用于机器学习。

算法可以分为这三个类别,这有助于发现可以扩展算法以实现其他目标的领域。重要的是,相同的量子算法可以支持几个不同的应用;例如,为金融投资组合优化应用程序提供支持的算法也可能支持单独的路由优化应用程序。

此外,应用程序的类别可以重叠;例如,如果你使用优化来得出越来越好的答案,你可能会在某个时候得出确切的答案,就像你使用计算一样。(例如,使用优化来查找大素数的质因数,就像 Shor 的算法一样,它属于计算类别。但这些类别对于了解量子计算的当前状态和预测我们在不久的将来可能期待的进展很有用。

量子计算的巨大潜力

量子计算在几个领域可能远远超过经典计算的能力。以下是其中一些的摘要。

密码学

量子密码学是量子计算中的“搅动饮料的稻草”——这句话最初归功于棒球巨星雷吉·杰克逊(Reggie Jackson),他在一个完全不同的领域(准确地说是正确的领域)工作。

目前对量子计算的浓厚兴趣始于 1994 年,当时 Shor 算法的发表,这是为数不多的量子算法之一,在早期被证明具有指数加速的潜力。然而,Shor 的算法只有在比当今可用的量子计算机强大得多的量子计算机上运行时才能完成有用的工作。

量子计算有可能打破当今用于保护数字通信的最常见加密方法,例如 RSA 和 ECC,它们可以保护电子邮件、银行信息、Web 等。这些加密方法分别依赖于大整数分解的难度和计算离散对数的难度。

量子计算机可以比经典计算机以指数级的速度执行这些操作,这使它们对传统的加密方法构成威胁。量子算法已被提出用于密钥交换、数字签名和加密,它们是安全通信的构建块。

搜索算法

几十年来,搜索算法一直是计算机科学研究的重要领域。使用量子算法进行搜索的实际示例包括互联网搜索、金融、物流和运输中的优化问题。

例如,使用量子算法进行投资组合优化将帮助金融分析师在经典算法所需时间的一小部分内找到给定投资组合的最佳投资策略。(如果你拥有量子计算机而其他投资者没有,那么使用量子算法来优化你的投资组合尤其有效。

随着数据的指数级增长,需要解决一些算法挑战。最大的挑战之一是在合理的时间内找到最佳解决方案,这就是量子算法发挥作用的地方。

最早、最著名和最有前途的量子算法之一是格罗弗算法,用于搜索未排序的数据库以及广泛的其他目的。

金融行业应用

量子计算开始在金融行业掀起波澜,许多公司转向这项新技术,以改善其运营并获得竞争优势。如今,各种金融公司正在探索量子算法和应用,用于投资组合优化、风险管理和欺诈检测等用途。

领先的投资银行高盛(Goldman Sachs)和其他几家银行正在努力开发用于投资组合优化的量子算法;高盛(Goldman Sachs)有时被称为“吸血鬼鱿鱼”,在提高投资回报方面取得了可喜的成果。通过利用量子计算的处理能力,这种投资组合优化可以有效地分析大量数据,并识别传统算法可能忽略的投资机会,从而做出更明智的投资决策。

量子算法能够同时执行多个计算,可以帮助金融机构做出更明智的决策,同时最大限度地降低风险并实现回报最大化。

保险风险分析与欺诈检测

量子算法在保险业中可能特别有用的一个领域是风险分析。保险公司使用风险分析来确定特定事件发生的可能性以及与该事件相关的潜在成本。

量子算法可以通过允许在更短的时间内执行更复杂的计算来大大增强这一过程。反过来,这将使保险公司能够更好地评估风险并设定更准确的保费。

量子算法在保险业可能受益的另一个领域是欺诈检测。欺诈性索赔每年给保险公司造成数十亿美元的损失。检测和预防欺诈是许多保险公司的首要任务。量子算法可以通过分析大量数据并检测使用传统方法可能难以发现的模式,帮助保险公司更有效地识别欺诈性索赔。

后勤

物流行业一直在寻求优化其供应链流程的方法,而出现的最新创新之一是量子算法的使用。

鉴于供应链优化所涉及的复杂性,量子算法有可能在这一领域非常有效。它们可以促进大型数据集的分析,优化运输路线,降低运输成本,并提高整体运营效率。

物流力量的一个简单易懂的例子是快递公司 UPS 使用的日常路线规划。他们以训练司机和设计路线而闻名,几乎总是避免左转。

这不是某种政治声明,而是所有车辆的驾驶员有时在获得安全左转机会时遭受漫长等待的结果。通过避免使用它们,UPS 速递员可以节省时间和金钱。(甚至可能在途中避免一些弯曲的挡泥板。

醫學

量子算法在医学科学中最有前途的应用之一是在分子水平上模拟人体的运作。量子计算机可以在这里取得成功,而经典计算机则无法做到这一点。

使用量子算法的一个真实例子是多伦多大学的研究人员所做的工作。他们使用量子算法来模拟参与癌症发展的蛋白质的行为。通过这样做,他们能够确定一种潜在的候选药物,可以抑制蛋白质的活性,从而可能导致新的癌症治疗。

量子算法显示出前景的另一个领域是医学成像。例如,MRI扫描会产生大量数据,必须对其进行处理和分析才能生成身体图像。经典计算机可能会难以完成这项任务,但量子算法可以更有效地处理它,这可能会导致更快、更准确的诊断,以及更有效的治疗。

最后,量子算法还用于提高我们对生物系统的理解。通过模拟复杂生物系统的行为,研究人员可以深入了解它们的工作原理,并开发新的疾病治疗方法。

药品

开发新药的过程非常耗时且昂贵,许多潜在的候选药物在临床试验中失败。然而,量子算法可以模拟分子的行为,其细节水平是经典计算机无法做到的。

量子计算机为此目的的有效性意味着研究人员将能够更准确地预测不同化合物的有效性,从而有可能实现更快、更成功的药物开发。

一种用于药物发现的量子算法是变分量子特征求解器(VQE)。该算法用于确定分子的基态能量,这是药物设计的关键因素。

VQE 算法使用混合方法,将经典计算和量子计算相结合来解决复杂问题。它在药物发现中特别有用,因为它可以准确预测化合物的分子结构及其与靶蛋白的相互作用。

另一种在药物发现中获得关注的量子算法是我们之前提到的QAOA算法。它解决了药物发现中常见的优化问题。QAOA算法使用一系列量子门来优化分子的能量景观,这有助于研究人员确定最有前途的候选药物。

应对气候变化

气候变化是一场迫在眉睫的危机,需要创新的解决方案。使用量子计算和量子算法可能就是这样一种解决方案。这些技术可以帮助我们更好地了解气候模式,并更准确地预测未来的气候变化。

通过模拟复杂系统并以更快的速度执行计算,量子算法可以帮助我们确定减少碳排放的方法,从制造过程或环境空气中捕获碳,并开发更高效的可再生能源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新华

感谢打赏,我会继续努力原创。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值