什么是机器学习?
计算机识别数据模式并利用它们做出超出我们能力的预测的能力正在深刻地改变世界。随着技术的快速进步,机器学习正在催生大大小小的创新,从客户服务聊天机器人到面部识别软件再到自动驾驶汽车。由于不同行业的许多公司都接受了它,整个行业有各种各样的职业机会。
如果您拥有机器学习背景,您可以成为机器学习工程师、自然语言处理 (NLP) 科学家、
数据科学家 、以人为本的机器学习设计师或商业智能开发人员。近年来,对机器学习专家的需求不断增加,大型科技公司愿意为最优秀的候选人支付丰厚的薪水。
有兴趣在这个利基市场发展职业生涯吗?参加最好的机器学习课程,以获得该领域和相关概念的全面知识。参加 ML 课程的学生将获得应对现实生活挑战所需的知识和技能。无论您是有兴趣了解机器学习还是试图在该领域发展职业生涯,您都可以通过这些课程获得急需的接触机会。
在本文中,我们列出了您可以学习的最佳机器课程和计划,以提高自己的技能,并在 2023 年获得最好的机器学习工作之一。通过顶级在线课程机器之一培养必要的行业就绪技能和知识学习。现在就让我们来看看这些课程吧!
2023 年报名的最佳机器学习课程(免费和付费)
在制定 2023 年最佳在线机器学习课程列表时,考虑了许多因素/方面。这样,课程的总体范围很快就会缩小,但总体目标是帮助您选择值得您花时间和精力的课程。
- 涵盖的教学大纲:起草该列表时考虑了教学大纲涵盖的内容以及其设计的好坏,以迎合不同的专业水平。
- 课程亮点和内容成果:此外,我们还讨论了课程成果和其他有助于学生获得适销对路技能的功能,例如安置帮助、模拟面试和实践项目。
- 所需技能:我们已经讨论了考生注册课程所需具备的必备技能。
- 课程持续时间:我们已确定每门课程的持续时间。
- 课程费用:课程根据其功能和费用进行排名,以便您获得最佳价值。
下面列出了您可以在 2023 年学习的最佳机器学习课程、认证和计划以成为机器学习专家并找到你梦想的工作。此列表包括免费和付费证书课程,这些课程受到广泛好评,并被全球数以千计的学生、专业人士和学习者使用。
1. Scaler 的数据科学和机器学习项目
该课程根据来自 50 强科技公司顾问的见解而设计,被认为是数据科学和机器学习领域最受欢迎的在线课程。该课程为您作为开发人员增加价值,并使您能够了解多种机器学习算法背后的数学原理。通过结构良好的模块和实践培训,您将准备好应对最棘手的机器学习和数据科学挑战。开始使用 Scaler 的数据科学和机器学习计划不需要任何编码经验。它旨在满足不同专业水平的学生:初学者、中级和高级。它是该列表中最受欢迎和评价最高的课程之一。
课程亮点:
- 涵盖数据科学和机器学习的各个方面,从编程基础知识(字符串、决策树和控件、二进制、循环等)到中级编程主题(数组、数字系统、面向对象编程、排序、散列、递归等) .) 到 ML 工程(神经网络、NLP、强化学习、PyTorch、Keras 等)和高级编程主题(堆栈、队列、堆、数据库和系统设计、哈希、贪婪等)。
- 它提供职业支持以及与机器学习工程师的 1:1 指导计划,并拥有 2 万名强大的学生社区。
- 为您提供 600 多个安置合作伙伴(例如 Myntra、Paytm、Olx、Atlassian、Google、Flipkart、Adobe 等)的机会,帮助您找到数据科学工作。
- 作为该计划的一部分,您将从事现实世界的项目并获得行业专业人士的实时反馈。
- 经验丰富的专家会帮助您优化您的简历和 LinkedIn 个人资料。
- 提供负担得起的奖学金和融资。
- 您可以免费试用,并享受 14 天退款保证。
- 它通过与业内人士进行模拟面试来帮助您准备面试。
- 完成课程后提供持续的支持,日复一日地增强您的信心。
所需技能:需要编码经验或至少一种编程语言知识才能开始使用 Scaler 的数据科学和机器学习计划。
课程持续时间: 11-13 个月。
课程费用: 34.9 万印度卢比,包括商品及服务税,如果您决定在两周内退学,则可 100% 退款(可提供 EMI)。
2. 斯坦福大学机器学习
本机器学习课程由前百度首席科学家、谷歌大脑深度学习项目总监吴恩达教授。它包括机器学习算法的理论和实践方面。此外,您还可以学习如何实现计算机视觉、文本理解、数据库挖掘和创建机器人的机器学习算法。此外,您将有机会使用 Octave 和 Matlab 完成涉及光学字符识别的实际项目。完成本课程后,您将收到可共享证书,该证书可以显示在您的简历或 LinkedIn 个人资料中。
课程亮点:
- 本课程将向您介绍机器学习的基础知识、一变量和多变量的线性回归、神经网络、Logistic 回归、无监督学习、正则化、支持向量机等,您可以使用 Octave 或 MATLAB 进行学习。
- 在十一周的课程中,本课程涵盖了机器学习的各个方面和应用。
- 您将学习如何处理多类分类和异常检测等任务。
- 每周至少有一次自动评分测验。
所需技能:需要对线性代数、概率和统计有基本了解。
课程时长:11 周(大约)
课程费用:$4,056.00-$5,408.00
3. 华盛顿大学机器学习专业
该机器学习专业旨在教授理论知识和实践经验,为学生提供回归算法、聚类算法、分类算法和信息检索的坚实基础。这个包含三门课程的证书课程将为您担任机器学习科学家或工程师的角色做好准备。有志成为机器学习科学家的软件开发人员、统计学家、经验丰富的应用数学家或数据科学家应该学习本课程。完成本课程后,您将收到可共享证书,该证书可以显示在您的简历或 LinkedIn 个人资料中。
课程亮点:
- 本课程将向您介绍统计分析、数学建模、概率和优化技术、监督和无监督学习模型、高级机器学习应用、深度学习概念和应用等。
- 您将获得使用 TensorFlow、Sci-kit-learn 和 Keras 等开源工具的实践经验。
- 您将学习如何使用机器学习创建智能应用程序、分析大型数据集等。
- 该计划为您提供在线学习的便利以及实时互动的即时性。
所需技能:如果您是软件工程师、软件开发人员或其他类型的工程师,您将需要一些 C/C++、Java 或 Python 编程经验。等效的个人项目,例如 Kaggle 中的项目。此外,本科数学课程涵盖线性代数、微积分和概率。统计学本科课程或完成统计学基础课程。如果您是统计学家、应用数学家、数据科学家或拥有其他定量领域的博士学位,那么需要具备一些统计学家、数据科学家、应用数学家或定量领域的博士学位的经验。
课程时长:8 个月
课程费用:$4,548
4. 使用 TensorFlow API 的机器学习速成课程
作为机器学习的入门入门,谷歌提供的速成课程提供了大量的实践经验。首先询问您以前在机器学习方面的经验。根据您的答案,您将被引导至适当的资源,以便您可以最大限度地利用时间。此外,它还务实、灵活。它面向完全的初学者,但也允许那些在机器学习方面有一定经验的人参加该课程作为复习。
课程亮点:
- 本课程将向您介绍基本的机器学习概念,例如回归、损失函数和梯度下降。
- 该课程包括视频讲座、真实案例研究和实践练习。
- 本速成课程教您机器学习的基础知识,以及如何将其应用到现实生活中的问题。
- 谷歌研究人员的视频讲座。
所需技能:编程知识不是强制性的,但申请人应对数学和统计学有基本的了解。
课程时长:15 小时(大约)
5. ColumbiaX 的数据科学和分析机器学习
本课程旨在让您对机器学习及其不同算法有基本的了解。在本课程中,您将学习机器学习算法,例如支持向量机、逻辑回归、无监督学习、一变量和多变量线性回归等。您还将学习如何利用数据发现大量数据中隐藏的含义分析和主题建模。本机器学习课程强调统计机器学习的理论而不是机器学习的实际应用。完成本课程后,您将收到一份可共享的证书,证明您在数据科学和分析的机器学习方面的熟练程度。
课程亮点:
- 您将了解机器学习,并能够通过预测分析开发实用的解决方案。
- 课程结构良好。
- 课程内容深入且内容丰富。
- 该课程是自定进度的。因此,您可以在方便的时候安排和学习。
所需技能:申请人应对数学和计算机编程有基本了解。
课程时长:5 周(大约)
课程费用:免费
6.HarvardX 的机器学习
在本课程中,您将通过开发电影推荐系统来学习机器学习、主成分分析和正则化的基础知识。构建电影推荐系统将使您能够学习如何使用训练数据训练算法,以便您可以预测未来数据集的结果/结果。该课程将涵盖机器学习算法,例如单变量和多变量线性回归、无监督学习、支持向量机、逻辑回归等。完成本课程后,您将收到一份可共享的证书,证明您在数据科学机器学习方面的熟练程度和分析。
课程亮点:
- 您将构建一个电影推荐系统,以学习机器学习、主成分分析和正则化的流行算法。
- 您将了解什么是正则化以及它如何发挥作用。
- 本课程是自定进度的。这意味着您可以在方便的时候安排和学习。
- 它有一个结构良好的课程。
所需技能:编程知识不是强制性的,但申请人应对数学和统计学有基本的了解。
课程时长:8 周
课程费用:免费或 99 美元获得证书
7. 机器学习 A-Z:动手实践 Python 和机器学习数据科学中的 R (Udemy)
本课程旨在从头到尾教您机器学习和数据科学的基础知识。对于想要学习数据科学和机器学习的学生以及希望进入这些领域的专业人士来说,这是一门很棒的课程。了解每个概念和方法后,您可以使用专用的机器学习库应用它们来解决实际问题。完成本课程后,您将收到可共享证书,该证书可以显示在您的简历或 LinkedIn 个人资料中。
课程亮点:
- 本课程教授 Python 和 R 中的机器学习,并重点关注更具体的主题,如深度学习、自然语言处理、强化学习等。
- 这是一门实践课程,其中包含大量代码示例,以便您进行练习。
- 如果您有兴趣直接“做”,这门课程可能适合您。
- 本课程超过 40 小时的视频课程中穿插着练习。
所需技能:您只需熟悉高中的一些数学概念即可。
课程时长:45 小时(大约)
课程费用:3499 印度卢比
8. IBM 的 Python 机器学习
该课程通过使用著名的编程语言Python向学生介绍机器学习的基本概念,及其在医疗保健、电信、金融和高性能计算等领域的应用。此外,它还讨论了监督学习和无监督学习之间的差异,以及哪种类型的学习最适合哪种任务。完成本课程后,您将学到大量有关机器学习背后的数学知识。完成本课程后,您将收到可共享证书,该证书可以显示在您的简历或 LinkedIn 个人资料中。
课程亮点:
- 该课程提供了机器学习的现实示例,并向您展示它如何以意想不到的方式影响社会。
- 本课程涵盖机器学习算法、模型评估、监督学习与无监督学习等主题。
- 您可以立即开始并按照自己的进度学习。
- 本课程将向您展示 scikit-learn 和 SciPy 等机器学习库。
所需技能: 申请人应对数学和计算机编程有基本了解。还建议您具备一定的编程经验。
课程时长:4 周(大约)
9.佐治亚理工学院的机器学习
本课程将涵盖广泛的机器学习主题,重点是广度而不是深度。本课程没有深入探讨实现特定机器学习算法的细节,而是采用高级方法来解释机器学习概念。这门课程之所以如此有效,是因为它的教学方法。课程由两名讲师授课,每节课采用两人对话的形式,一名讲师作为学生提出问题,另一名讲师进行详细解答和讲解。在机器学习课程中听到这种交流令人耳目一新。
课程亮点:
- 本课程向您介绍监督和无监督学习、强化学习、回归和分类、聚类、特征选择和随机优化,以及马尔可夫决策过程、博弈论和决策。
- 完成本课程后,您将对监督学习、无监督学习和强化学习及其差异有一个全面的了解。
- 此外,您还将学习如何实施方法来解决这些问题,解释这些方法的结果,并评估其解决方案的正确性。
所需技能:编程知识不是强制性的,但申请人应对数学和统计学有基本的了解。
课程时长:4 个月(大约)
课程费用:免费
结论
如果您对数据、自动化和算法充满热情,机器学习是一个不错的职业选择。您的一天将充满移动和处理大量原始数据、实施算法以允许处理数据以及自动化流程以优化数据。作为使产品、服务和应用程序更加智能和有效的一种手段,机器学习是一项重要资产。那些有兴趣在该领域发展职业的人应该熟悉机器学习和相关概念。参加根据您的需求量身定制的最佳机器学习课程将有可能将您的职业生涯提升到一个新的水平。
此列表中提到的课程,例如来自 Scaler、斯坦福大学、华盛顿大学、Google、ColumbiaX 等的课程,将帮助您成为机器学习专家,因为它们深入涵盖了大多数 ML 主题。此外,这些课程还提供出色的职业和就业指导。除了具有成本效益之外,这些机器学习课程还完全灵活,让您可以随时随地学习。相比之下,Udemy、Coursera、Udacity、IIM 等提供的一些课程专注于特定主题,并且无论学生的专业水平如何,都可能无法满足所有学生的需求。希望本文满足您的期望,并且您喜欢一路了解不同的选择。获得机器学习认证以拓宽您的职业选择。