题目解读
题目描述
N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,请安排一个合理的方案使得所有人的等待时间之和尽量小。
提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
第二个龙头打水的人总等待时间 = 0 + 2 = 2
第三个龙头打水的人总等待时间 = 0 + 3 = 3
所以总的等待时间 = 6 + 2 + 3 = 11
输入格式
第一行两个正整数N M 接下来一行N个正整数Ti。
N,M< =1000,Ti< =1000
输出格式
最小的等待时间之和。(不需要输出具体的安排方案)
样例输入
7 3
3 6 1 4 2 5 7
样例输出
11
思路
题目中已经把思路告诉我们了,我们需要考虑的就是怎么存储数据
具体可以带代码里的注释
AC CODE
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int a[N];
int temp[N];//每个水龙头的等待时间
int sum[N];//如果当前是第i个人打水,保存前n-i个人打水的等待时间
int n,m;
int main() {
cin >> n >> m;
for(int i=0; i<n; i++)cin>>a[i];
//由提示知,等待时间升序排序后轮询分给每个水龙头计算时间即可
sort(a,a+n);
//如果一个水龙头的排队序列为
// 1 4 7
// 1 要参与两次等待
// 4要参与1次等待
// 那么该水龙头序列的等待时间为 1 + 1+4 = 6
// 那么我们不需要计算最后m个人的打水等待时间
for(int i=0; i<n-m; i++){
int id=i%m;//计算分到哪个水龙头
temp[id]+=sum[id]+a[i];//计算等待时间
sum[id]+=a[i];
}
int res=0;
for(int i=0; i<m; i++){
res+=temp[i];
}
cout << res;
return 0;
}
🌻编写本篇文章目的是笔者想以输出的形式进行学习,顺便记录学习点滴🌻
🌹 如果本篇文章对你有帮助的话那就点个赞吧👍🌹
😇 本篇文章可能存在多处不足,如有修改意见,可以私信或者评论我哦 😇