gbd的概念与常用指令

1.在linux系统下的警告和错误,当程序出下bug时候,linux终端会给大家两种不同的信息

警告(warning):有时候警告是不影响可执行程序的产生

错误(error):错误如果不改正,是不能生产可执行程序的

包含行 列  错误所在代码 错误原因  错误代码行

2.什么是GDB?

GDB,GNU工程调试器,让你看到发生了什么 在另一个程序执行时“内部”它 - 或者另一个程序 在它坠毁的那一刻正在做。

GDB 可以做四种主要的事情(加上其他支持的事情 其中)帮助您捕获 ACT 中的错误:

  • 启动程序,指定可能影响其行为的任何内容。
  • 使程序在指定条件下停止。
  • 检查程序停止时发生了什么。
  • 更改程序中的内容,以便进行试验 纠正一个 bug 的影响,然后继续了解另一个 bug。

3.使用GDB

1.准备一个c语言程序

2.编译程序,编译选项中需要加上-g

g++ -g **.cpp -o  ***

3.启动gdb调试

gdb ./***

4.gdb常用指令

quit(q):表示退出gdb 

run(r):表示可执行程序,如果没有设置断点,则从头执行文件

list (l):默认展示可执行文件的10行

list m,n 从m到n行信息

list main 展示main中间10行

break(b):表示设置断点,当调试器将程序运行到断点所在位置后,会暂停于此

break 行号:表示在某行设置断点

break func:表示在func指定位置设置断点

info break:查看所有断点的信息

delete breakpoint 断定编号:表示删除指定的断点

next(n):表示执行下一条语句

continue(c):表示从断点处继续向后执行,直到遇到下一个断点或者程序结束

step(s):能够跳入指定函数中,查看相关函数内部代码

print(p)变量名/地址:表示打印指定变量或地址信息

set variable 变量名=值:表示给某个变量设置相关的值

5.gdb使用小技巧

shell:后面可以跟终端指令,表示执行终端相关操作

set logging on:设置设置开启日志功能,会在当前目录中生成一个gdb.txt文件记录接下来的调试

watchpoint:观察点,如果设置的观察点的值发生改变,则会将该值的旧值和新值全部展示出来

watch *+变量地址

6.gdb调试出错的文件

当一个可执行程序出现错误时,会产生一个core文件,用于查看相关错误信息

linux系统默认是不产生core文件,需要进行相关设置后才能产生

通过ulimit-a查看

open files 1024大小  pipe size 8   0没有核文件

通关 ulimit -c unlimited来设置core文件的个数

执行可执行程序,如果程序有问题,会生成core文件

7.gdb调试其他正在执行文件

./可执行程序 &:表示将可执行程序后台运行,不占用当前终端

### 如何使用GBD数据库PAF进行集成和操作 #### 1. 理解GBD数据库和PAF的概念 全球疾病负担(Global Burden of Disease, GBD)是一个全面的公共卫生研究项目,旨在量化健康损失并提供有关全球、区域、国家乃至地方层面的主要健康问题的数据[^1]。人口归因分数(Population Attributable Fraction, PAF)是一种流行病学指标,用于估计由于暴露于特定风险因素而导致的疾病或死亡的比例。 #### 2. 获取GBD数据 为了获取GBD数据,可以访问官方提供的在线工具——可视化工具和GHDx (Global Health Data Exchange)[^2]。这些平台允许用户下载所需的时间序列数据集,包括但不限于发病率、患病率、伤残调整生命年(DALYs)等指标。 #### 3. 准备环境设置 在本地计算机上安装必要的软件包来进行数据分析是非常重要的一步。Python编程语言及其丰富的科学计算库非常适合处理此类任务: ```bash pip install pandas numpy matplotlib seaborn requests ``` 对于更复杂的统计建模需求,则可能还需要额外安装`statsmodels`或其他专门针对生物医学领域设计的R包。 #### 4. 加载和预处理GBD数据 一旦获得了所需的CSV文件或者其他格式的数据源之后,就可以开始加载它们到工作环境中去了。这里给出一段简单的Python代码片段作为示范: ```python import pandas as pd # 假设已经从GBD网站下载了一个名为'gbddata.csv'的数据表单 df = pd.read_csv('gbddata.csv') # 查看前几行记录以确认读取成功否 print(df.head()) ``` #### 5. 计算PAF值 基于所选的风险因子以及目标疾病的关联强度参数(比如相对危险度RR),可以通过下面这个通用公式来估算PAF: \[ \text{PAF} = \frac{\sum_{i}(p_i(RR_i-1))}{\sum_ip_iRR_i}\] 其中\( p_i \)表示第 i 类人群中的比例;而 \( RR_i \)则是指相对于未暴露组而言,在该类人群中观察到的结果发生的几率增加倍数。 具体实现时可以根据实际情况编写相应的函数完成这一过程: ```python def calculate_paf(prevalence_list, rr_list): numerator = sum([pre * (rr - 1) for pre, rr in zip(prevalence_list, rr_list)]) denominator = sum([pre * rr for pre, rr in zip(prevalence_list, rr_list)]) return numerator / denominator if denominator != 0 else None ``` #### 6. 结果解释应用 最后一步就是解读所得出的具体数值,并考虑将其应用于实际场景当中去。例如说如果发现某项环境污染物质对当地居民健康的负面影响显著高于平均水平的话,那么相关部门或许就应该采取措施减少这种污染物排放量了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值