动态规划之矩阵连乘问题

        矩阵连乘问题解法有穷举法、动态规划法和备忘录法。矩阵连乘问题要解决最优相乘次序问题和构造最优解。

        备忘录法和动态规划都使用一个数组m[i][j]来存储第i到j矩阵相乘的最少相乘次数,动态规划中r表示链长,r为1时候m为0,所以从2到n,r-1=j-i;s[i][j]用于构造最优解,记下每一个斜线的最少相乘次数的位置,k是i到j的最优划分位置的变量。

 

 

 

 这里以ACM-矩阵连乘动态规划求最优值ACM-矩阵连乘备忘录求最优值为例。

//备忘录
#include<stdio.h>
#include<math.h>
#include<string.h>
int n,p[100],m[100][100];
int lookupChain(int i,int j){
    if(m[i][j]>0) 
        return m[i][j];
    if(i==j) 
        return 0;
    int u=lookupChain(i,i)+lookupChain(i+1,j)+p[i-1]*p[i]*p[j];//初始化最小值,在i后面分割
    for(int k=i+1;k<j;k++)
    {
        int f=lookupChain(i,k)+lookupChain(k+1,j)+p[i-1]*p[k]*p[j];
        if(f<u) 
                u=f;
        }
        m[i][j]=u;
        return u;
}
 
int main(void){
     
     
    while (scanf("%d",&n)!=EOF)
    {
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
            {
                m[i][j]=0;
            }
        for (int i = 0; i < n; i++)
        {
            scanf("%d",&p[i]);
        }
         
        int t = lookupChain(1,n-1);
        printf("%d\n",t);
    }
     
 
    return 0;
}
//动态规划
#include<stdio.h>
#include<math.h>
#include<string.h>
int p[100],m[100][100],s[100][100];
 
void matrixchain(int n)
{
    int i,j,r,k;
    for ( i = 0; i <=n; i++)
        for ( j = 0; j <=n; j++)
    {
        m[i][j]=0;
        s[i][j]=0;
    }
    for ( r = 2; r <=n; r++)
        for ( i = 1; i <=n-r+1; i++)
        {
            j=i+r-1;
            m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];
            s[i][j]=i;
            for ( k = i+1; k < j; k++)
            {
                int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(t < m[i][j])
                {
                    m[i][j]=t;
                    s[i][j]=k;
                }
            }
             
        }
}
 
int main(void){
     
    int n;
    while (scanf("%d",&n)!=EOF)
    {
         
        for (int i = 0; i <n; i++)
        {
            scanf("%d",&p[i]);
        }
         
        matrixchain(n-1);
        printf("%d\n",m[1][n-1]);
    }
     
 
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值