组合数求模

大家都在中学阶段学习了组合数的定义:

这个表示的是从n个元素中选取m个元素的方案数。

(PS.组合数求模似乎只用在信息学竞赛和 ACM竞赛等计算机编程设计大赛中……,求在现实中的运用)

可以知道当n,m取得比较大的时候,组合数可能很大很大 (天文数字?无法度量?)

例如 C(100, 50) = 100891344545564193334812497256,于是计算机的 64位整数型已经没法阻止它了!C(1000000000, 500000000) ? C( 2^50000, 2^49999 ) ? (Note:这里^表示次方,你能计算得到2的50000次级别的组合数么?它有多少位?)

看起来似乎高精度神马的都无法阻止这个邪恶的函数的急速扩张了……

庆幸的是,在竞赛中我们能够遇到的规模也就只有10^9级别(显然是mod上某个数字K,否则输出的文件那叫一个大啊……),这是多么的小呀呀呀呀!(Note:相比较2^50000 -_-)

一.入门篇:我会暴力!

(1)K = 1:今天你学数论了么?难度系数: 0

(2)(K> 1) n, m <= 1000 (n * n是可以接受的)难度系数: 1

递推!

c(n,m) =c(n - 1,m) + c(n – 1, m – 1)

某人: 555555这个公式太复杂,记忆不能!

c(5,2) = 10 = c(4,2) + c(4,1) = 6 + 4……

我们知道mod操作满足加法性质,即

(a + b) mod c = ( (a mod c) + (b mod c) ) mod c

c(n,m) = ( c(n - 1,m) + c(n – 1, m – 1) ) mod K

证明利用模的定义即可……很简单的

于是如此,我们只需要简单的开上一个 f[ N ][ N ],2个循环搞定!

其实我们遇到的大部分情况需要的组合数都可以用这个来搞定~

这里唯一可能被邪恶的其实是 K + K溢出!所以如果某个邪恶的题目出到 K = 2*10^9,在某些倒霉的场合会出现2个接近K的int相加,那么就溢出了!不要忘记用unsigned int… (我从来没出过这种题的!真的!)

(3)n巨大(10^9级别), m巨小(10^4级别), k很小,大约10^9

a)m<= 1:今天你学数论了么?难度系数: 0

b)m<= 10000难度系数: 2

可以发现分子分母的项数都少到可以接受!于是我们可以采取各种方式来通过:

i)对于每个数字,分解素因子,合并,二分求幂! (你会数论!)

ii)对于每个数字,只分解包含于K的素因子,例如K里面有一个素因子3,那么分解的时候我只考虑3呀,因为其他部分显然与3互质……最后统计3的次数即可……

例子:

计算C(10, 3) mod 36

C(10, 3) = (10 * 9 * 8) / (1 * 2 * 3)

对于分母:

1 : ok逆元(有区别么?)

2:没法逆元, (2, 36) = 2

3:没法逆元, (3,36) = 3

为了神马啊!!还不让人逆元啊!显然是因为邪恶的2和3,如果他们不存在,那么多么美好呀!

于是我开2个变量,记录2,3的次数

对于分子:

10:里面只有1个2,去掉了2,剩下的部分是 10 / 2 = 5.

9:里面只有2个3,去掉去掉,剩下的是 9 / (3^2) = 1.

8:里面只有3个2,去掉去掉,剩下的是 8 / (2^3) = 1

于是啊,分母我们把剩下的部分乘起来,得到了神马?得到了和 2,3因子完全无关的部分mod 36的值!就是 5 * 1 * 1 = 5了。

接下来,还有分母呢

1:逆元(其实你可以无视它)

2:一个2,去掉去掉,剩下1,逆元继续是1(继续无视)

3:一个3,同上

接下来发现,2有几个?分子有4个,分母1个,所以一共只有4 – 1 = 3个

3有几个?同上的做法,显然只有1个。

于是呢答案就是:

5 * 1 * 2^3 * 3^1 = 12( mod 36)

解释:

5 ->分子除了因子2,3的积

1 ->分母除了因子2,3的逆元的积

2^3 ->最终统计发现有3个2

3^1 ->最终统计发现有1个3

请好好理解本例子,你会发现这个问题是如此的美妙!

经典例题:

http://acm.fzu.edu.cn/problem.php?pid=2020

c)m<= n别想了!我不会!你会了教我!难度系数: -1

二.基础篇:我会数论!

1)n,m<= 10^6, K是10^9级别

对于n!分解素因子,这里就不说了,可以参考各种帖子。

之后保存个数,二分求幂啊啊啊啊啊

2)n,m<= 10^10, k是素数,并且K很小(比如几百?)

其实遇到这种情况我都用一个叫Lucas定理的东西。

ni,mi就是把 n,m分解p进制的第i位的值。

例如:

计算 C(12, 4) mod 7

n = 12(15)(base_7)

m = 4(4) (base_7)

为了对齐,我们前面的部分补0

m = 4(04) (base_7)

于是

Ans = C(5,4) * C(1,0) mod 7= 5 (mod 7)

有人又要问了,如果mi > ni怎么办呀?

直接为0!!!!!!!!!

这里不给出证明,证明可以搜索到。同时由于这个应用的区域比较狭窄,显然有更简单,更好理解的算法,于是这里被无视了。

三.究极篇

n,m <= 10^9, p <= 10^5

是不是怎么看怎么不可做呢?

第一次见到这种题目是不是觉得作者NC了,出个不可做题 >_<

第一次交发现一坨人全部WA,是不是觉得作者的数据搞疵?!!!!

首先要知道,这题其实等价是求:

求完直接合并一个模方程即可。(CRT)

p^c的规模大约是10^5。

c不是1,lucas阻止不了它。

n,m太大,因子分解也阻止不了它。

下面介绍我的做法:

假设 p = 3, c = 2,也就是mod 9

假设n = 19

n! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 *…… * 19

要是可以快速得到 n!中除掉3以后 mod 9的结果,那么多好呀!

看3多讨厌,直接砍

type cal( int n) :

n! = [ 1 * 2 * 4 * 5 * 7 * 8 * … * 16 * 17 * 19 ] * (3 * 6 * 9 * 12 * 15 * 18)= [ 1 * 2 * 4 * 5 * 7 * 8 * … * 16 * 17* 19 ] * 3^6( 1 * 2 * 3 * 4 * 5 * 6)

然后发现后面的一坨实际上是 cal( n / p) !!!!

再看前半部分,尼玛是以 p^c为周期的啊!!!

[1 * 2 * 4 * 5 * 7 * 8 ] = [10 * 11 * 13 * 14 * 16 *17 ] = (mod 9)

于是说白了,对于前面的部分,由于周期,都是浮云了

下面是孤立出来的19

可以知道孤立出来的长度不超过 p^c ,于是暴力啊,暴力啊!

于是完美解决n!中和 p无关的项 mod p^c的值!!!

接下来是分母部分,一模一样,无非多了一个求逆元(因为都和p没关系了,逆元必然存在)

我们来分析一下,这样的复杂度是如何的呢

每次递归,规模变为原来的 1/p

logp N的啊!!!

当然是层数= =

于是问题完美解决!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值