给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
输入:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出:Yes
#include<stdio.h>
#include<stdlib.h>
struct Tree{
char name;
int left;
int right;
}T1[10],T2[10];//创建一个大的后面就不用再判断和创建;
int creat(struct Tree T[],int num)
{
int i,root;
int check[num];
char chleft,chright;
for(i=0;i<num;i++)
check[i]=0;
for(i=0;i<num;i++)
{
scanf("%c %c %c\n",&T[i].name,&chleft,&chright);
if(chleft!='-')
{
T[i].left=chleft-'0';
check[T[i].left]=1;
}
else
T[i].left=-1;
if(chright!='-')
{
T[i].right=chright-'0';
check[T[i].right]=1;
}
else
T[i].right=-1;
}
for(i=0;i<num;i++)
if(check[i]==0)
break;
root=i;
return root;
}
//如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的
//这个题是用数组表示树的地址
int issame(int h1,int h2)
{
//通过判断每个的名字相同且子树相同,直到子树为空
if(h1==-1&&h2==-1)
return 1;
if((h1==-1&&h2!=-1)||(h2==-1&&h1!=-1))
return 0;
if(T1[h1].name!=T2[h2].name)
return 0;
//左子树都空判断右子树
if(T1[h1].left==-1&&T2[h2].left==-1)
return issame(T1[h1].right,T2[h2].right);
//左都不空,判断左子树的名字是否相同,如果相同,则没有换位,正常比较
if((T1[h1].left!=-1&&T2[h2].left!=-1)&&(T1[T1[h1].left].name==T2[T2[h2].left].name))
return issame(T1[h1].left,T2[h2].left)&&issame(T1[h1].right,T2[h2].right);
//左右换位导致了一个的左子树为空另一个左子树不为空或者左子树名字不同
else{
return issame(T1[h1].left,T2[h2].right)&&issame(T1[h1].right,T2[h2].left);
}
}
int main()
{
int h1,h2,num1,num2;
scanf("%d\n",&num1);
if(num1==0)
{
scanf("%d\n",&num2);
if(num2!=0)
{
h2=creat(T2,num2);
printf("No");
}
else
printf("Yes");
return 0;
}
h1=creat(T1,num1);
scanf("%d\n",&num2);
if(num2==0)
{
printf("No");
return 0;
}
h2=creat(T2,num2);
if(issame(h1,h2))
printf("Yes");
else printf("No");
return 0;
}