前缀和---最大子串和问题

最大子段和问题。给定由n个整数组成的序列,求序列中子段的最大和,若所有整数均为负整数时定义最大子段和为0。

输入格式:
第一行输入整数个数n(1≤n≤10000),再依次输入n个整数。

输出格式:
输出第一行为最大子段和,第二行为子段第一个数和最后一个数在整个序列中的位序。

输入样例1:
5
-2 11 -4 13 -5 -2
输出样例1:
20
2 4

这是前缀和的解法,时间复杂度为O(n2)。这题让输出最大子串的和还有对应的位序(即数组下标加1),如果只要求输出和,用dp动态规划,时间复杂度可以降到o(n)。如果这题暴力求解时间复杂度为o(n3)。除了此题为例的以为前缀和以外,还有二维前缀。

#include <stdio.h>
#define maxn 10000
int num[maxn],pre[maxn];
int flag=-1;
void mssum(int n,int a[])
{
    int i,j,max=-1,temp1,temp2;
    for(i=0;i<n;i++)
    {
        for(j=i;j<n;j++)//注意下标是从j=i开始,如果从0开始就错了
        {
            if(i==0)//特判一下i=0;,可以理解从第一个元素到底j+1个元素的和
            {
                if(pre[j]>max)
                {
                    max=pre[j];
                    temp1=i;
                    temp2=j;//记录当前最大子串的数组下标
                }
            }
            else
            {
                if(pre[j]-pre[i-1]>max)//一般情况,减去的是i-1下标的前缀数组
                {
                    max=pre[j]-pre[i-1];
                    temp1=i;
                    temp2=j;
                }
            }
        }
    }
    printf("%d\n%d %d",max,temp1+1,temp2+1);//输出结果
}
int main()
{
    int n,i;
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        scanf("%d",&num[i]);
        if(num[i]>0)
           flag=1;//这个是标记是否全是负数,如果全是负数,则输出0
        if(i==0)//初始化前缀和
            pre[i]=num[i];
        else
            pre[i]=pre[i-1]+num[i];
    }
    if(flag==-1)
        printf("0");
    else
        mssum(n,num);
    return 0;
}

有时间再写写dp的,浙大数据结构第一课就有这个例题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值