[NOIP2001 提高组] 一元三次方程求解

该博客介绍了一种解决一元三次方程的方法,通过二分法寻找方程在特定区间内的实根。代码示例展示了如何在C++中实现这个算法,确保找到的根满足条件且精确到小数点后两位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

有形如:ax3+bx2+cx+d=0a x^3 + b x^2 + c x + d = 0ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,da,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 −100-100100100100100 之间),且根与根之差的绝对值 ≥1\ge 11。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 222 位。
提示:记方程 f(x)=0f(x) = 0f(x)=0,若存在 222 个数 x1x_1x1x2x_2x2,则在 (x1,x2)(x_1, x_2)(x1,x2) 之间一定有一个根。f(x1)∗f(x2)<0f(x_1) *f(x_2)<0f(x1)f(x2)<0

输入输出格式

输入格式

一行,444 个实数 a,b,c,da, b, c, da,b,c,d

输出格式

一行,333 个实根,从小到大输出,并精确到小数点后 222 位。

输入输出样例

输入样例

1 -5 -4 20

输出样例

-2.00 2.00 5.00

#include<iostream>
#include<cstdio>
using namespace std;
double a,b,c,d;
double fun(double x)
{
    double y=((a*x+b)*x+c)*x+d; 
    return y;
}
int main()
{
    scanf("%lf%lf%lf%lf",&a,&b,&c,&d);  //输入
    for(double i=-100;i<=100;i++)
    {
        double f1=fun(i);
        double f2=fun(i+1);
        // [i,i+1]之间存在根
        if(f1==0)
            printf("%.2lf ",i); 
        if(f1*f2<0)
        {
            double l=i,r=i+1;
            double mid;
                //在整数区间内求近似值,精度在0.001即可
            while(r-l>1e-3)
            {
                mid=l+(r-l)/2.0;
 
                //二分法的技巧
                if(fun(l)*fun(mid)<=0)
                    r=mid;
                else
                    l=mid;
            }
            printf("%.2lf ",mid);
        }
    }
    return 0;
}
/*
1 -5 -4 20

-2.00 2.00 5.00
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值