题目描述
有形如:ax3+bx2+cx+d=0a x^3 + b x^2 + c x + d = 0ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,da,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 −100-100−100 至 100100100 之间),且根与根之差的绝对值 ≥1\ge 1≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 222 位。
提示:记方程 f(x)=0f(x) = 0f(x)=0,若存在 222 个数 x1x_1x1 和 x2x_2x2,则在 (x1,x2)(x_1, x_2)(x1,x2) 之间一定有一个根。f(x1)∗f(x2)<0f(x_1) *f(x_2)<0f(x1)∗f(x2)<0
输入输出格式
输入格式
一行,444 个实数 a,b,c,da, b, c, da,b,c,d。
输出格式
一行,333 个实根,从小到大输出,并精确到小数点后 222 位。
输入输出样例
输入样例
1 -5 -4 20
输出样例
-2.00 2.00 5.00
#include<iostream>
#include<cstdio>
using namespace std;
double a,b,c,d;
double fun(double x)
{
double y=((a*x+b)*x+c)*x+d;
return y;
}
int main()
{
scanf("%lf%lf%lf%lf",&a,&b,&c,&d); //输入
for(double i=-100;i<=100;i++)
{
double f1=fun(i);
double f2=fun(i+1);
// [i,i+1]之间存在根
if(f1==0)
printf("%.2lf ",i);
if(f1*f2<0)
{
double l=i,r=i+1;
double mid;
//在整数区间内求近似值,精度在0.001即可
while(r-l>1e-3)
{
mid=l+(r-l)/2.0;
//二分法的技巧
if(fun(l)*fun(mid)<=0)
r=mid;
else
l=mid;
}
printf("%.2lf ",mid);
}
}
return 0;
}
/*
1 -5 -4 20
-2.00 2.00 5.00
*/