其他
文章平均质量分 62
赤坂·龙之介
专注python,pytorch常见函数的解析。
展开
-
Path环境变量的理解以及设置MinGW环境变量
配置path环境变量在使用MinGW的时候,不小心把path变量的东西全部删掉了,结果只能自己重新设置path变量,首先要知道如何设置path变量。Path路径:用来指定可执行文件的搜索路径,也就是后缀名为.exe文件,方便以后在命令行直接使用.exe文件。其中.exe文件就是可执行文件,桌面文件的快捷方式也是.exe文件,可以在它的属性中找到.exe的路径,然后设置path变量。如何设置...原创 2019-04-01 11:42:53 · 3111 阅读 · 0 评论 -
机器学习西瓜书各章详细目录定位
第一章 绪论1.1 引言(P1)1.2 基本术语(P2)1.3 假设空间(P4)1.4 归纳偏好(P6)1.5 发展历程(P10)1.6 应用现状(P13)1.7 阅读材料(P16) 第二章 模型评估与选择2.1 经验误差与过拟合(P23)2.2 评估方法(P24) 2.2.1 留出法 2.2.2 交叉验证法 2.2.3 自助法2.3 性能度量 2.3.1 错误率与精度(P29) 2.3.2 查准率、查全率与F1 2.3.3 ROC与AUC(P33) 2.原创 2020-08-05 19:38:50 · 7421 阅读 · 0 评论 -
知识图谱笔记
知识图谱知识分类陈述性知识过程性知识本体(Ontology)知识库(Knowledge Base)数据库(Database)知识图谱详细解析知识分类陈述性知识描述客观事物的性状和关系等静态信息,主要分为事物、概念、命题三个层次。事物指特定的事或物概念是对一类事物本质特征的反映命题是对事务之间关系的陈述非概括性命题表示特定事物之间关系概括性命题描述概念之间的普遍关系过程性知识描述问题如何求解等动态信息。规则描述事物的因果关系控制结构描述问题的求解步骤本体(Ontolo原创 2021-02-07 18:27:41 · 774 阅读 · 0 评论 -
VSCode快捷键
记录不熟练的vscode快捷键快捷键命令复制本行到下一行shift+alt+ down(下键)移动光标至行首home键移动光标至行尾end键原创 2021-05-08 22:56:08 · 137 阅读 · 0 评论 -
计算机系统常识笔记
计算机系统常识操作系统篇处理器(CPU)篇显卡(GPU)篇编译器篇操作系统篇处理器(CPU)篇显卡(GPU)篇编译器篇原创 2021-01-31 12:35:45 · 1058 阅读 · 0 评论 -
信号处理基本概念
信号处理信号是传递信息的函数,也是独立变量的函数,这个变量可以是时间空间位置等。如图像的灰度值等就是空间位置的函数,声压随着时间在变化,就是时间的函数。连续信号就是在某个时间区间,除有限间断点外所有瞬时均有确定值。模拟信号是连续信号的特例,时间和幅度均连续。图像,语音都是模拟信号,人们能够感知的大部分是模拟信号。离散信号是时间上不连续,幅度连续。数字信号是对幅度量化,时间和幅度均不连续。为什么用数字信号?因为计算机只能处理数字信号。数字信号是在模拟信号的基础上经过采样、量化和编码而形成的。原创 2021-01-02 10:39:19 · 1014 阅读 · 0 评论 -
编译原理总概述笔记
编译原理编译原理程序设计语言分类翻译编译解释编译的转换过程两阶段的转换三阶段的转换编译程序的工作词法分析语法分析中间代码生成优化目标代码生成表格与表格管理出错处理语句翻译实例过程编写编译程序方式编译原理是介绍高级程序设计语言变换成计算机硬件所能识别的机器语言,以便计算机进行处理。程序设计语言分类高级语言汇编语言机器语言在计算机上如何执行一个高级语言程序?把高级语言程序翻译成机器语言程序运行所得的机器语言程序求得计算结果翻译是指能把某种语言的源程序,在不改变语义的条件下,转换成另原创 2020-12-26 16:03:44 · 691 阅读 · 0 评论 -
GAN对抗生成网络原始论文理解笔记
文章目录论文:Generative Adversarial Nets符号意义生成器(Generator)判别器(Discriminator)生成器和判别器的关系GAN的训练流程简述论文中的生成模型和判别模型GAN的数学理论最大似然估计转换为最小化KL散度问题定义PGP_GPG全局最优论文:Generative Adversarial Nets符号意义G()表示对生成器功能的一个封装函数D()表示对判别器功能的一个封装函数x表示真实数据z表示含噪音的数据x‾表示G(z),将噪音数据输入到生成原创 2020-12-13 22:18:52 · 638 阅读 · 0 评论 -
机器学习常见基本概念笔记
机器学习监督学习和非监督学习:有监督学习的方法就是识别事物,识别的结果表现在给待识别数据加上了标签。因此训练样本集必须由带标签的样本组成。比如分类和回归。而无监督学习方法只有要分析的数据集的本身,预先没有什么标签。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不予以某种预先分类标签对上号为目的。如聚类。验证集主要作用是来验证是否过拟合、以及用来调节训练参数等。分类的损失函数:是用来估量模型的预测值y^与真实值 y 的不一致程度。若损失函数很小,表明机器学习模型与数据真实分布很接近,则原创 2020-12-02 16:21:03 · 191 阅读 · 0 评论 -
人工智能领域论文常见基本概念笔记
BLEU分数:一个比较候选文本翻译与其他一个或多个参考翻译的评价分数。AUC:衡量学习器优劣的一种指标,Roc曲线下与坐标轴围成的面积(0.5~1),越接近1,检测方法真实性越高。Image Caption:一般有几种叫法:图像描述,图像标注,看图说话。它的任务,就是给机器一张图像,而后需要机器去感知图像中的物体,甚至去捕捉画面中的关系,最后生成一段描述性质的语言。image caption的经典过程:输入一张图片先被CNN编码成一系列feature vectors,每一个vector都捕获关原创 2020-12-02 16:20:35 · 324 阅读 · 0 评论 -
深度学习基本概念笔记
注意力机制(Attention Mechanism):注意力机制受到人类视觉注意力机制的启发,即关注图像特定部分的能力。即当神经网络发现输入数据的关键信息后,通过学习,在后继的预测阶段对其予以重点关注。Attention Mechanism可以帮助模型对输入的X每个部分赋予不同的权重,抽取出更加关键及重要的信息,使模型做出更加准确的判断,同时不会对模型的计算和存储带来更大的开销,这也是Attention Mechanism应用如此广泛的原因。对nlp领域,Attention Mechanism的目的是原创 2020-12-02 16:18:01 · 614 阅读 · 0 评论 -
计算机领域专业术语中英文对照(时常更新)
机器学习线性回归(linear regression)多标签分类(multi-label classification,MLC)验证集(validation)均方误差(MSE)深度学习反向传播(Back Propagation)张量(Tensor)随机梯度下降(SGD)向量(Vector)标量(Scalar)矩阵(Matrix)仿射层(Affine layer)论文数据集(dataset)评价指标(Evaluation Metrics)图像特征(Visual Features原创 2020-12-02 11:26:13 · 1648 阅读 · 0 评论 -
自然语言处理领域基本概念笔记
自然语言处理词向量:自然语言处理问题要转化为机器学习的问题,首先就要把单词数学化表示,就是用n维实数向量来代表一个单词。Word2Vec:基本思想是把自然语言中的每一个词,表示成一个统一意义统一维度的短向量。对话系统对话系统发展历程的三个阶段:1.基于符号规则和模板的对话系统2.基于统计机器学习的对话系统3.基于数据驱动的深度学习的对话系统对话系统根据不同的应用场景可以分为两种类型:1.任务型对话系统面向垂直领域,目的是帮助用户完成预定任务或动作,应用场景:虚拟个人助理,预定机票、原创 2020-12-02 12:33:33 · 659 阅读 · 0 评论 -
图片清晰度,分辨率,像素总结
像素像素是一个个小方块,是构成位图的基本单位。将图片放大即可看出来,如图:分辨率显示分辨率是指像素的总数量,如上图的2200×1400,也就是宽有2200个像素,高有1400个像素。图像分辨率是指每英寸所包含的像素个数,如上图的72像素/英寸(也叫72ppi)。理论上ppi越高,图就越清晰。一般分辨率人肉眼能看到的72ppi就很清晰了,打印的则要300ppi。上图中像素大小就是在显示器显示的大小,文档大小就是打印的大小。两者可以相互转换,其中1英寸=2.54cm,计算公式为:文档宽度÷2.54原创 2020-07-13 18:13:02 · 7501 阅读 · 0 评论