HDU - 1257 最少拦截系统解题报告(贪心/dp)


好像好几天没有写题解了,今天补一补

题目描述

题目:https://vjudge.net/problem/HDU-1257
中文题目,我就不多说了。

思路分析

这道题可以用贪心,也可以用dp。

贪心

可以这样想:有无数个防御系统,高度无限高,每次来一颗导弹,都去找高度比它高但又最接近的(>=中最小的)一个系统攻击,最后统计有多少个导弹系统不是无限高。
这里有个问题:怎么找到最接近的那个呢?首先,在这个思路里,每个系统需要记下的只是现在它能打到的最大高度,顺序并不重要,因此,我们可以每次都sort一次,然后用lower_bound,二分查找到要找的那个系统进行操作,这样就避免了找系统的时候的各种繁琐操作了。

完整代码(贪心)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=30005;
int main()
{
	int n;
	while(cin>>n)
	{
		vector<int> daodan;
		daodan.clear(); 
		daodan.push_back(30005);
		int maxnum=30005;
		for(int i=0;i<n;i++)
		{
			int t;
			cin>>t;
			if(maxnum>=t)
			{
				int i=lower_bound(daodan.begin(),daodan.end(),t)-daodan.begin();
				daodan[i]=t;
			}
			else
			{
				daodan.push_back(t);
				maxnum=t;
			}
			sort(daodan.begin(),daodan.end());
			maxnum=daodan[daodan.size()-1];
		}
		cout<<daodan.size()<<endl;
	}
	return 0;
}

dp

这道题也可以是看作这样:找到最长的递减序列,删掉这里的元素,然后反复这个过程,计算一共进行了多少次,得到需要的系统数。
但是,这个算法需要很多删除的操作,耗时较大。
再进一步分析:其实,对于每一个序列,序列中递增序列的长度就是不下降序列数。为什么呢?拿样例来说:
8 389 207 155 300 299 170 158 65
找到的两个递减序列是:
389 207 155 158 65
300 299 170
那个,在第一个序列中总能找到一个数:它会小于第二个序列中的某个数。
因此,我们可以得到这个结论:一个数列的最长不上升子序列的数目等于该数列最长上升子序列的长度。
因此,我们可以用lis算法来得到答案。

完整代码(dp)

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100000;
int dp[maxn];
int heigh[maxn];
int n;
int make()
{
	int ans=1;
	dp[1]=1;
	for(int i=2;i<=n;i++)
	{
		int Max=0;
		for(int j=1;j<i;j++)
		{
			if(heigh[j]<heigh[i]&&dp[j]>Max)
			{
				Max=dp[j];
			}
		}
		dp[i]=Max+1;
		ans=max(dp[i],ans);
	}
	return ans;
}

int main()
{

	while(cin>>n)
	{
		memset(dp,0,sizeof(dp));
		memset(heigh,0,sizeof(heigh));
		for(int i=1;i<=n;i++)
		{
			cin>>heigh[i];
		}
		cout<<make()<<endl;
	} 
	return 0;
}
发布了58 篇原创文章 · 获赞 3 · 访问量 2834
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览