51nod 1742 开心的小Q 解题报告(莫比乌斯函数+线性筛+数论分块)

链接:http://www.51nod.com/Challenge/Problem.html#problemId=1742
要点:
1、这里的枚举变换和平时的不大一样?
2、莫比乌斯函数和容斥
根据莫比乌斯函数定义,我们得到要求的答案为:
a n s = ∑ i = 1 n ∑ d ∣ i ( 1 − ∣ μ ( d ) ∣ ) ans=\sum_{i=1}^{n}\sum_{d|i}(1-|\mu(d)|) ans=i=1ndi(1μ(d))
这里我们这里我们令t=i/d,则:变换为:
a n s = ∑ t = 1 n ∑ d = 1 n t ( 1 − ∣ μ ( d ) ∣ ) = ∑ t = 1 n F ( n t ) \begin{aligned} ans&=\sum_{t=1}^n\sum_{d=1}^{n\over t}(1-|\mu(d)|)\\ &=\sum_{t=1}^nF({n\over t}) \end{aligned} ans=t=1nd=1tn(1μ(d))=t=1nF(tn)
这里这么做是为了使得后面的式子只与 n t {n\over t} tn有关。
现在分析 F ( n ) F(n) F(n):它的意义其实就是求1~n内含有平方因子的数的个数。
这里采用的方法是利用莫比乌斯函数进行容斥
F ( n ) = n − ∑ i = 1 n μ ( i ) n i 2 F(n)=n-\sum_{i=1}^{\sqrt{n}}\mu(i){n\over i^2} F(n)=ni=1n μ(i)i2n
为什么?我们想下,我们若直接 n i 2 {n\over i^2} i2n求出来的是 i 2 i^2 i2的倍数,但如果直接算 ∑ i = 1 n \sum_{i=1}^n i=1n,之间会有重复的,比如,同时是 2 2 2^2 22 3 2 3^2 32的倍数,那么,我们就需要- ( 2 ∗ 3 ) 2 (2*3)^2 (23)2,而前面的正负号不正好和莫比乌斯函数的定义相吻合吗?据此可以进行容斥。
补:为什么枚举到 n \sqrt{n} n ?1~n中的数,若含有平方因子,则这个平方因子的算术平方根最大为 n \sqrt n n ,不可能更大。

AC代码

#include <bits/stdc++.h>
using namespace std;
template<typename T>
void read(T&x){
    x=0;
    int f=1;
    char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-')f*=-1;
        ch=getchar();
    }
    while(isdigit(ch)){
        x=x*10+(ch-'0');
        ch=getchar();
    }
}
//====================================================
typedef long long ll;
int a,b;
const int maxn=3e6+10;
bool vis[maxn];
int pri[maxn],tot;
int mu[maxn];
void init(){
    mu[1]=1;
    for(int i=2;i<maxn;++i){
        if(!vis[i])pri[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*pri[j]<maxn;++j){
            vis[i*pri[j]]=1;
            if(i%pri[j]==0)break;
            mu[i*pri[j]]=-mu[i];
        }
    }
    //cerr<<"**"<<mu[8]<<" "<<mu[7]<<endl;
}

/*ll cal(int x){
    ll res=0;
    for(int i=1;i<=x;++i){
        int add=0;
        for(int d=1;d<=sqrt(i);++d){
            if(i%d==0){
                add+=(1-abs(MUL(d)));
                if(d*d!=i){
                    add+=(1-abs(MUL(i/d)));
                }
            }
        }
        res+=add;
    }
    return res;
}*/

int cal(int n){
    if(n==0) return 0;
    ll res=n;
    int lim=sqrt(n);
    for(int i=1;i<=lim;++i){
        res-=mu[i]*(n/i/i);
    }
    return res;
}

ll solve(int n){
    ll res=0;
    for(int l=1,r;l<=n;l=r+1){
        int now=n/l;
        r=n/now;
        res+=1ll*(r-l+1)*cal(now);
    }
    return res;
}

int main(){
    //freopen("in.txt","r",stdin);
    init();
    read(a),read(b);
    cout<<solve(b)-solve(a-1)<<endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值