Leetcode(11) - 盛水最多的容器- java版
题目
难度: 中等
给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明: 你不能倾斜容器,且 n 的值至少为 2。
示例1:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
一. 暴力法
具体思路:
考虑每对可能出现的线段组合,并找出这些情况之下的最大面积
实现:
class Solution {
public int maxArea(int[] height) {
int ret = 0;
for(int i =0; i<height.length;i++){
for(int j =i+1;j<height.length;j++){
ret = Math.max(ret,Math.min(height[i],height[j]) * (j-i));
}
} '
return ret;
}
}
二. 双指针法
具体思路:
由于面积取决于边长较短的那一端,所以如果想要获得更大的面积,边长较短的一端必须舍弃,去追求更大的高度来弥补宽度的减少.而如果舍弃的是长度较长的一端,那么因为高度受限于长度较短的一端,所以面积不会增大.
我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾。 此外,我们会使用变量 max 来持续存储到目前为止所获得的最大面积。 在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 max,并将指向较短线段的指针向较长线段那端移动一步。
实现:
class Solution {
public int maxArea(int[] height) {
int max = 0,left = 0,right = height.length-1;
while(left < right){
max = Math.max(max,Math.min(height[left],height[right])* (right-left) );
if(height[left] < height[right])
left++;
else right--;
}
return max;
}
}