druid数据源【转】

Druid是一个JDBC组件,它包括三部分: 

  • DruidDriver 代理Driver,能够提供基于Filter-Chain模式的插件体系。 

  • DruidDataSource 高效可管理的数据库连接池。 

  • SQLParser 

Druid可以做什么? 

1) 可以监控数据库访问性能,Druid内置提供了一个功能强大的StatFilter插件,能够详细统计SQL的执行性能,这对于线上分析数据库访问性能有帮助。 

2) 替换DBCP和C3P0。Druid提供了一个高效、功能强大、可扩展性好的数据库连接池。 

3) 数据库密码加密。直接把数据库密码写在配置文件中,这是不好的行为,容易导致安全问题。DruidDruiver和DruidDataSource都支持PasswordCallback。 

4) SQL执行日志,Druid提供了不同的LogFilter,能够支持Common-Logging、Log4j和JdkLog,你可以按需要选择相应的LogFilter,监控你应用的数据库访问情况。 

扩展JDBC,如果你要对JDBC层有编程的需求,可以通过Druid提供的Filter-Chain机制,很方便编写JDBC层的扩展插件。 

[摘自OSChina:http://www.oschina.net/p/druid/]

使用druid的方式:

第一步:在spring中配置数据源

在spring中配置数据源

<bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close">
    <!-- 基本配置,访问数据库的driver、url、user、password -->
    <property name="driverClassName" value="${jdbc.druid.driverClassName}" />
    <property name="url" value="${jdbc.druid.url}" />
    <property name="username" value="${jdbc.druid.username}" />
    <property name="password" value="${jdbc.druid.password}" />
    <!-- 配置初始化大小、最大、最小 -->
    <property name="initialSize" value="${jdbc.druid.initialSize}" />
    <property name="maxActive" value="${jdbc.druid.maxActive}" />
    <property name="minIdle" value="${jdbc.druid.minIdle}" />
    <!-- 配置获取连接等待超时的时间,单位是毫秒 -->
    <property name="maxWait" value="${jdbc.druid.maxWait}" />
    <!-- 配置监控统计拦截的filters -->
    <property name="filters" value="${jdbc.druid.filters}" />
    <!-- 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒 -->
    <property name="timeBetweenEvictionRunsMillis" value="${jdbc.druid.timeBetweenEvictionRunsMillis}" />
    <!-- 配置一个连接在池中最小生存的时间,单位是毫秒 -->
    <property name="minEvictableIdleTimeMillis" value="${jdbc.druid.minEvictableIdleTimeMillis}" />
    <!-- 用来检测连接是否有效的sql,要求是一个查询语句。如果validationQuery为null,testOnBorrow、testOnReturn、testWhileIdle都不会其作用。 -->
    <!-- 查询语句需要根据不同的数据源进行调整设置 -->
    <property name="validationQuery" value="${jdbc.druid.validationQuery}" />
    <!-- 建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。 -->
    <property name="testWhileIdle" value="${jdbc.druid.testWhileIdle}" />
    <!-- 申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。 -->
    <property name="testOnBorrow" value="${jdbc.druid.testOnBorrow}" />
    <!-- 归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能 -->
    <property name="testOnReturn" value="${jdbc.druid.testOnReturn}" />
    <!-- 对于长时间不使用的连接强制关闭 -->
    <property name="removeAbandoned" value="${jdbc.druid.removeAbandoned}" />
    <!-- 超过30分钟开始关闭空闲连接 -->
    <property name="removeAbandonedTimeout" value="${jdbc.druid.removeAbandonedTimeout}" />
    <!-- 将当前关闭动作记录到日志 -->
    <property name="logAbandoned" value="${jdbc.druid.logAbandoned}" />
    <!-- 设置数据库事务是否自动提交,默认值为true -->
    <property name="defaultAutoCommit" value="${jdbc.druid.defaultAutoCommit}" />
    <!-- 是否缓存preparedStatement,也就是PSCache。PSCache对支持游标的数据库性能提升巨大。-->
    <property name="poolPreparedStatements" value="${jdbc.druid.poolPreparedStatements}" />
    <!-- 要启用PSCache,必须配置大于0,当大于0时,poolPreparedStatements自动触发修改为true。 -->
    <property name="maxOpenPreparedStatements" value="${jdbc.druid.maxOpenPreparedStatements}" />
    <property name="maxPoolPreparedStatementPerConnectionSize" value="${jdbc.druid.maxPoolPreparedStatementPerConnectionSize}" />
</bean>

第二步:配置相关参数

配置相关参数

#根据不同的数据库信息需要作出相应的调整,如driverClassName、url、maxActive、minIdle、maxWait、validationQuery等

jdbc.druid.driverClassName = org.hsqldb.jdbcDriver
jdbc.druid.url = jdbc:hsqldb:file:d:/tmp/User1.db;hsqldb.write_delay=true
jdbc.druid.username = sa
jdbc.druid.password = 
jdbc.druid.initialSize = 5
jdbc.druid.maxActive = 20
jdbc.druid.minIdle = 10
jdbc.druid.maxWait = 3000
jdbc.druid.filters = stat
jdbc.druid.timeBetweenEvictionRunsMillis = 60000
jdbc.druid.minEvictableIdleTimeMillis = 300000
jdbc.druid.validationQuery = SELECT 1 FROM INFORMATION_SCHEMA.SYSTEM_USERS
jdbc.druid.testWhileIdle = true
jdbc.druid.testOnBorrow = true
jdbc.druid.testOnReturn = false
jdbc.druid.removeAbandoned = true
jdbc.druid.removeAbandonedTimeout = 1800
jdbc.druid.logAbandoned = false
jdbc.druid.defaultAutoCommit = false
jdbc.druid.poolPreparedStatements = false
jdbc.druid.maxOpenPreparedStatements = 0
jdbc.druid.maxPoolPreparedStatementPerConnectionSize = 0

 

第三步:配置监控页面

访问页面配置

<servlet>
    <servlet-name>DruidStatView</servlet-name>
    <servlet-class>com.alibaba.druid.support.http.StatViewServlet</servlet-class>
</servlet>
<servlet-mapping>
    <servlet-name>DruidStatView</servlet-name>
    <url-pattern>/druid/*</url-pattern>
</servlet-mapping>

通过以上配置,在应用启动后访问http://localhost:8080/prjname/druid/

### 回答1: Spring Boot可以很方便地整合Druid数据源,只需要在pom.xml中添加Druid和JDBC依赖,然后在application.properties中配置Druid数据源即可。 具体步骤如下: 1. 在pom.xml中添加Druid和JDBC依赖: ``` <dependency> <groupId>com.alibaba</groupId> <artifactId>druid-spring-boot-starter</artifactId> <version>1.1.10</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jdbc</artifactId> </dependency> ``` 2. 在application.properties中配置Druid数据源: ``` spring.datasource.url=jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=utf-8&useSSL=false spring.datasource.username=root spring.datasource.password=root spring.datasource.driver-class-name=com.mysql.jdbc.Driver # Druid配置 spring.datasource.type=com.alibaba.druid.pool.DruidDataSource spring.datasource.druid.initial-size=5 spring.datasource.druid.min-idle=5 spring.datasource.druid.max-active=20 spring.datasource.druid.test-on-borrow=true spring.datasource.druid.test-on-return=false spring.datasource.druid.test-while-idle=true spring.datasource.druid.time-between-eviction-runs-millis=60000 spring.datasource.druid.validation-query=SELECT 1 FROM DUAL spring.datasource.druid.filters=stat,wall,log4j spring.datasource.druid.max-wait=60000 spring.datasource.druid.pool-prepared-statements=true spring.datasource.druid.max-pool-prepared-statement-per-connection-size=20 spring.datasource.druid.use-global-data-source-stat=true ``` 3. 在代码中使用Druid数据源: ``` @Autowired private DataSource dataSource; ``` 以上就是整合Druid数据源的步骤,希望对你有所帮助。 ### 回答2: SpringBoot是现在使用最广泛的Java框架之一,它提供了很多方便开发的功能和快捷的开发方式,其中整合Druid数据源就是其中之一。 首先需要在pom.xml文件中引入druid和jdbc相关的依赖,例如: ``` <dependency> <groupId>com.alibaba</groupId> <artifactId>druid</artifactId> <version>1.1.10</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jdbc</artifactId> </dependency> ``` 接着,在application.properties文件中配置druid数据源,例如: ``` # 数据源配置 spring.datasource.url=jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=utf-8 spring.datasource.username=root spring.datasource.password=root spring.datasource.driverClassName=com.mysql.jdbc.Driver spring.datasource.type=com.alibaba.druid.pool.DruidDataSource spring.datasource.filters=stat,wall,log4j spring.datasource.maxActive=20 spring.datasource.initialSize=1 spring.datasource.minIdle=3 spring.datasource.maxWait=60000 spring.datasource.timeBetweenEvictionRunsMillis=60000 spring.datasource.minEvictableIdleTimeMillis=300000 spring.datasource.validationQuery=SELECT 1 FROM DUAL spring.datasource.poolPreparedStatements=true spring.datasource.maxOpenPreparedStatements=50 ``` 其中,spring.datasource.url是数据库连接字符串,spring.datasource.username和spring.datasource.password是数据库的用户名和密码,spring.datasource.driverClassName是数据库驱动的类名。其他参数是Druid连接池的相关配置,比如最大并发连接数、初始连接数、最小空闲连接数等。 然后,通过在@SpringBootApplication注解中加上@EnableTransactionManagement和@MapperScan注解来开启事务和扫描Mapper,例如: ``` @SpringBootApplication @EnableTransactionManagement @MapperScan(basePackages = "com.example.demo.dao") public class DemoApplication { public static void main(String[] args) { SpringApplication.run(DemoApplication.class, args); } } ``` 最后,在需要使用数据源的地方注入DataSource,并使用JdbcTemplate来操作数据库,例如: ``` @Service public class UserServiceImpl implements UserService { @Autowired private DataSource dataSource; private JdbcTemplate jdbcTemplate; @PostConstruct public void init() { jdbcTemplate = new JdbcTemplate(dataSource); } @Override public User getUserById(int id) { String sql = "SELECT * FROM user WHERE id=?"; return jdbcTemplate.queryForObject(sql, new Object[]{id}, new BeanPropertyRowMapper<>(User.class)); } @Override public void saveUser(User user) { String sql = "INSERT INTO user(name, age, gender) VALUES(?, ?, ?)"; jdbcTemplate.update(sql, new Object[]{user.getName(), user.getAge(), user.getGender()}); } // 其他方法省略... } ``` 通过以上配置和使用,就能在SpringBoot项目中成功整合Druid数据源并操作数据库。 ### 回答3: Spring Boot 是一个快速构建 Spring 应用程序的框架,它内置了对多种数据源的支持,其中包括 Druid 数据源Druid 是阿里巴巴开源的一款数据库连接池和 SQL 监控工具,它可以大大提高应用程序性能和数据库安全性。在本文中,我们将学习如何使用 Spring Boot 整合 Druid 数据源。 1. 引入依赖 在 pom.xml 中添加以下依赖: ```xml <dependency> <groupId>com.alibaba</groupId> <artifactId>druid-spring-boot-starter</artifactId> <version>${druid.version}</version> </dependency> ``` 2. 配置数据源 在 application.properties 或 application.yml 中配置 Druid 数据源: ```yaml spring.datasource.url=jdbc:mysql://localhost:3306/test spring.datasource.username=root spring.datasource.password=root # 连接池配置 spring.datasource.druid.initial-size=5 spring.datasource.druid.min-idle=5 spring.datasource.druid.max-active=20 spring.datasource.druid.max-wait=60000 spring.datasource.druid.time-between-eviction-runs-millis=60000 spring.datasource.druid.min-evictable-idle-time-millis=300000 spring.datasource.druid.validation-query=SELECT 1 FROM DUAL spring.datasource.druid.test-while-idle=true spring.datasource.druid.test-on-borrow=false spring.datasource.druid.test-on-return=false # 连接属性配置 spring.datasource.druid.filters=stat,wall spring.datasource.druid.connection-properties=druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000 ``` 3. 配置 Druid 监控 可以通过以下配置开启 Druid 监控: ```yaml # 监控统计 spring.datasource.druid.stat-view-servlet.enabled=true spring.datasource.druid.stat-view-servlet.url-pattern=/druid/* # 登录账号密码配置 spring.datasource.druid.stat-view-servlet.login-username=admin spring.datasource.druid.stat-view-servlet.login-password=admin # 过滤器配置 spring.datasource.druid.web-stat-filter.enabled=true spring.datasource.druid.web-stat-filter.url-pattern=/* spring.datasource.druid.web-stat-filter.exclusions=*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/* ``` 4. 使用数据源 现在我们可以通过注入 DataSource 对象来使用 Druid 数据源,例如: ```java @RestController public class TestController { @Autowired private DataSource dataSource; // ... } ``` 以上就是使用 Spring Boot 整合 Druid 数据源的步骤。通过使用 Druid 数据源可以提高应用程序的性能和数据库安全性,而 Spring Boot 可以简化整个开发过程,让开发者更加专注于业务逻辑的实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值