题目:给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:
输入:n = 1, k = 1
输出:[[1]]
提示:
1 <= n <= 20
1 <= k <= n
思路
这是一个典型的组合生成问题,可以使用回溯算法来解决。回溯算法是一种通过穷举所有可能情况来找到所有解的算法。对于这个问题,我们从数字 1 开始,依次尝试将每个数字加入到当前组合中,如果当前组合的大小等于 k,则将其加入结果列表中。然后,我们通过递归调用回溯函数,不断尝试新的数字,直到找到所有可能的组合。
解题过程
1.首先定义一个方法 combine,该方法接受两个参数 n 和 k,分别表示范围的上限和要生成的组合的长度。
2.在 combine 方法中,创建一个结果列表 result,用于存储所有可能的组合。
3.调用回溯函数 backtrack,传入初始参数:结果列表 result、初始空组合 current、起始数字 1、范围上限 n 和组合长度 k。
4.在 backtrack 方法中,如果当前组合的长度等于 k,则将当前组合加入结果列表 result 中,并返回。
5.否则,从起始数字开始,遍历到 n,对于每个数字 i,将其加入当前组合 current 中,然后递归调用 backtrack 方法,传入更新后的参数:结果列表 result、更新后的组合 current、下一个数字 i + 1、范围上限 n 和组合长度 k。
6.在递归调用返回后,将当前加入的数字从组合中移除,以便尝试下一个数字。
Code
class Solution {
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> result = new ArrayList<>();
backtrack(result, new ArrayList<>(), 1, n, k);
return result;
}
private void backtrack(List<List<Integer>> result, List<Integer> current, int start, int n, int k) {
if (current.size() == k) {
result.add(new ArrayList<>(current));
return;
}
for (int i = start; i <= n; i++) {
current.add(i);
backtrack(result, current, i + 1, n, k);
current.remove(current.size() - 1);
}
}
// public List<List<Integer>> combine(int n, int k) {
// List<List<Integer>> result = new ArrayList<>();
// generateCombinations(result, new ArrayList<>(), 1, n, k);
// return result;
// }
// private void generateCombinations(List<List<Integer>> result, List<Integer> current, int start, int n, int k) {
// if (current.size() == k) {
// result.add(new ArrayList<>(current));
// return;
// }
// // 优化点:当剩余可选数字不足以组成长度为 k 的组合时,提前返回
// if (current.size() + (n - start + 1) < k) {
// return;
// }
// for (int i = start; i <= n; i++) {
// current.add(i);
// generateCombinations(result, current, i + 1, n, k);
// current.remove(current.size() - 1);
// }
// }
}