给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

题目:给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

提示:

1 <= n <= 20
1 <= k <= n

思路

这是一个典型的组合生成问题,可以使用回溯算法来解决。回溯算法是一种通过穷举所有可能情况来找到所有解的算法。对于这个问题,我们从数字 1 开始,依次尝试将每个数字加入到当前组合中,如果当前组合的大小等于 k,则将其加入结果列表中。然后,我们通过递归调用回溯函数,不断尝试新的数字,直到找到所有可能的组合。

解题过程

1.首先定义一个方法 combine,该方法接受两个参数 n 和 k,分别表示范围的上限和要生成的组合的长度。
2.在 combine 方法中,创建一个结果列表 result,用于存储所有可能的组合。
3.调用回溯函数 backtrack,传入初始参数:结果列表 result、初始空组合 current、起始数字 1、范围上限 n 和组合长度 k。
4.在 backtrack 方法中,如果当前组合的长度等于 k,则将当前组合加入结果列表 result 中,并返回。
5.否则,从起始数字开始,遍历到 n,对于每个数字 i,将其加入当前组合 current 中,然后递归调用 backtrack 方法,传入更新后的参数:结果列表 result、更新后的组合 current、下一个数字 i + 1、范围上限 n 和组合长度 k。
6.在递归调用返回后,将当前加入的数字从组合中移除,以便尝试下一个数字。

Code

class Solution {
    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> result = new ArrayList<>();
        backtrack(result, new ArrayList<>(), 1, n, k);
        return result;
    }

    private void backtrack(List<List<Integer>> result, List<Integer> current, int start, int n, int k) {
        if (current.size() == k) {
            result.add(new ArrayList<>(current));
            return;
        }

        for (int i = start; i <= n; i++) {
            current.add(i);
            backtrack(result, current, i + 1, n, k);
            current.remove(current.size() - 1);
        }
    }

    // public List<List<Integer>> combine(int n, int k) {
    //     List<List<Integer>> result = new ArrayList<>();
    //     generateCombinations(result, new ArrayList<>(), 1, n, k);
    //     return result;
    // }

    // private void generateCombinations(List<List<Integer>> result, List<Integer> current, int start, int n, int k) {
    //     if (current.size() == k) {
    //         result.add(new ArrayList<>(current));
    //         return;
    //     }

    //     // 优化点:当剩余可选数字不足以组成长度为 k 的组合时,提前返回
    //     if (current.size() + (n - start + 1) < k) {
    //         return;
    //     }

    //     for (int i = start; i <= n; i++) {
    //         current.add(i);
    //         generateCombinations(result, current, i + 1, n, k);
    //         current.remove(current.size() - 1);
    //     }
    // }
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值