二项堆

目录

一,二项堆

二,二项堆的初始化

三,二项堆查找堆顶

四,二项堆的插入

五,二项堆的合并

六,二项堆的删除

七,二项堆完整代码


一,二项堆

二项堆是一些高度互不相同的二项树组成的森林,其中每个二项树的根节点都是这棵树的最大值或最小值。

 

二,二项堆的初始化

用Sum记录森林中节点总数,N表示最多有N棵树,那么森林中最多能存储2^N-1个节点

int Sum;//节点总数
const int N=30;//最多树数

struct TreeNode {
    int val;
    TreeNode* child[N-1];
};

TreeNode* tree[N];

void init()
{
    Sum=0;
    for(int i=0;i<N;i++)tree[i]=NULL;
}

直接用数组把所有树的根存起来,根据Sum的值就可以知道哪些树是森林中有的,哪些没有。

 

三,二项堆查找堆顶

以大顶堆为例,下同。

如果需要小顶堆,只需要修改cmp函数。

template<typename T>
bool cmp(T a, T b)
{
    return a < b; //大顶堆
}

int topId()
{
    int ans=0;
    bool flag=true;
    for(int i=0;i<N;i++) {
        if (((Sum >> i) & 1) == 0)continue;
        if(flag || cmp(tree[ans]->val,tree[i]->val))ans=i,flag=false;
    }
    return ans;
}

int top()
{
    return tree[topId()]->val;
}

 

四,二项堆的插入

生成一个单节点的二项树,并依次检查是否有同高度的树,如果有就合并为更高1层的树,并继续检查。

//把a和b合并
TreeNode* merge(TreeNode* a,TreeNode* b,int d)
{
    if(d<0 || d>=N)return NULL;
    if(cmp(a->val,b->val)){
        b->child[d]=a;
        return b;
    }
    a->child[d]=b;
    return a;
}

//把p合入到a里面
TreeNode* merge(TreeNode* a[],TreeNode* p,int s,int d)
{
    for(int i=d;i<N;i++){
        if(((s>>i)&1)==0){
            tree[i]=p;
            break;
        }
        p = merge(tree[i],p,i);
        tree[i]=NULL;
    }
}

void push(int x)
{
    if(Sum>=(1<<N))return; //满载
    TreeNode*p=new TreeNode[1];
    p->val=x;
    for(int i=0;i<N;i++)p->child[i]=NULL;
    merge(tree,p,Sum,0);
    Sum++;
}

这个操作过程可以保证,以任意节点为根的树都是堆,即对于最大堆,从根到叶子节点的路径的所有节点上的值是递减的。

 

五,二项堆的合并

合并2个二项堆,可以从小到大,也可以从大到小,

其实就相当于2个二进制数的加法,可以从低位开始,也可以从高位开始。

//把b合入到a里面,b不复存在
void merge(TreeNode* a[],TreeNode* b[],int &sa,int sb)
{
    for(int i=0;i<N;i++) {
        if (((sb >> i) & 1) == 0)continue;
        merge(a,b[i],sa);
        sa+=(1<<i),sb-=(1<<i);
    }
}

 

六,二项堆的删除

找到最大值所在的树,直接把根节点删掉,就得到一个二项堆,然后把这个二项堆和原堆合并即可。

void pop()
{
    int id=topId();
    TreeNode* b[N];
    for(int i=0;i<N;i++)b[i]=tree[id]->child[i];
    Sum-=(1<<id);
    tree[id]=NULL;
    merge(tree,b,Sum);
}

 

七,二项堆完整代码

#include<iostream>
#include <vector>
using namespace std;

int Sum;//节点总数
const int N=30;//最多树数

struct TreeNode {
    int val;
    TreeNode* child[N-1];
};

TreeNode* tree[N];

void init()
{
    Sum=0;
    for(int i=0;i<N;i++)tree[i]=NULL;
}


template<typename T>
bool cmp(T a, T b)
{
    return a < b; //大顶堆
}

int topId()
{
    int ans=0;
    bool flag=true;
    for(int i=0;i<N;i++) {
        if (((Sum >> i) & 1) == 0)continue;
        if(flag || cmp(tree[ans]->val,tree[i]->val))ans=i,flag=false;
    }
    return ans;
}

int top()
{
    return tree[topId()]->val;
}

//把a和b合并
TreeNode* merge(TreeNode* a,TreeNode* b,int d)
{
    if(d<0 || d>=N)return NULL;
    if(cmp(a->val,b->val)){
        b->child[d]=a;
        return b;
    }
    a->child[d]=b;
    return a;
}
//把p合入到a里面
TreeNode* merge(TreeNode* a[],TreeNode* p,int s,int d)
{
    for(int i=d;i<N;i++){
        if(((s>>i)&1)==0){
            tree[i]=p;
            break;
        }
        p = merge(tree[i],p,i);
        tree[i]=NULL;
    }
}

void push(int x)
{
    if(Sum>=(1<<N))return; //满载
    TreeNode*p=new TreeNode[1];
    p->val=x;
    for(int i=0;i<N;i++)p->child[i]=NULL;
    merge(tree,p,Sum,0);
    Sum++;
}

//把b合入到a里面,b不复存在
void merge(TreeNode* a[],TreeNode* b[],int &sa)
{
    for(int i=0;i<N;i++) {
        if (b[i]) {
            merge(a,b[i],sa,i);
            sa+=(1<<i);
        }
    }
}

void pop()
{
    int id=topId();
    TreeNode* b[N];
    for(int i=0;i<N;i++)b[i]=tree[id]->child[i];
    Sum-=(1<<id);
    tree[id]=NULL;
    merge(tree,b,Sum);
}

int main()
{
    init();
    push(4);
    push(2);
    push(6);
    push(3);
    push(4);
    push(5);
    cout<<top()<<" ";
    pop();
    cout<<top()<<" ";
    pop();
    cout<<top()<<" ";
    pop();
    cout<<top()<<" ";
    pop();
    cout<<top()<<" ";
    pop();
    cout<<top()<<" ";
    pop();
    cout<<endl<<Sum;
    return 0;
}

运行结果:

6 5 4 4 3 2
0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值