组合数、卢卡斯定理

目录

组合数

CSU 1021 组合数末尾的零

POJ 2249 Binomial Showdown

卢卡斯定理

FZU 2020 组合


组合数

CSU 1021 组合数末尾的零

题目:
Description

从m个不同元素中取出n (n ≤ m)个元素的所有组合的个数,叫做从m个不同元素中取出n个元素的组合数。组合数的计算公式如下:

C(m, n) = m!/((m - n)!n!) 

现在请问,如果将组合数C(m, n)写成二进制数,请问转这个二进制数末尾有多少个零。

Input

第一行是测试样例的个数T,接下来是T个测试样例,每个测试样例占一行,有两个数,依次是m和n,其中n ≤ m ≤ 1000。

Output

分别输出每一个组合数转换成二进制数后末尾零的数量。

Sample Input

24 21000 500
Sample Output

16

代码:
 

#include <iostream>
using namespace std;

int degree(int m)
{
	if (m)return degree(m / 2) + m / 2;
	return 0;
}
int main()
{
	int t;
	scanf("%d", &t);
	int m, n;
	while (t--)
	{
		scanf("%d%d", &m, &n);
		printf("%d\n", degree(m) - degree(n) - degree(m - n));
	}
	return 0;
}

POJ 2249 Binomial Showdown

题目:

In how many ways can you choose k elements out of n elements, not taking order into account? 
Write a program to compute this number.
Input
The input will contain one or more test cases. 
Each test case consists of one line containing two integers n (n>=1) and k (0<=k<=n). 
Input is terminated by two zeroes for n and k.
Output
For each test case, print one line containing the required number. This number will always fit into an integer, i.e. it will be less than 2  31. 
Warning: Don't underestimate the problem. The result will fit into an integer - but if all intermediate results arising during the computation will also fit into an integer depends on your algorithm. The test cases will go to the limit. 
Sample Input
4 2
10 5
49 6
0 0
Sample Output
6
252
13983816


思路:

先把素数打表,然后把组合数中各个素数的次数求出来,然后全部乘起来就不会溢出

代码:
 

#include<iostream>
using namespace std;
class ComNum
{
。。。。。。
};
int main()
{
	int n, k;
	ComNum c;
	while (cin >> n >> k)
	{
		if (n == 0)return 0;
		cout << c.Get(n,k) << endl;
	}
	return 0;
}

卢卡斯定理

其中 0<= q,r <p

FZU 2020 组合

题目:
Description

给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!
Input

输入数据第一行是一个正整数T,表示数据组数 (T <= 100) 接下来是T组数据,每组数据有3个正整数 n, m, p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数)
Output

对于每组数据,输出一个正整数,表示C(n,m) mod p的结果。
Sample Input

2
5 2 3
5 2 61
Sample Output

1
10

因为给出了T的上限100,m的上限10000,所以不需要数组,每次直接算出结果即可。

计算的时候需要用到逆元,这应该是必须用到的。

代码:

#include<iostream>
using namespace std;

int p;

long long get_mi(int n, int k)
{
	if (k == 0)return 1;
	long long r = get_mi(n, k / 2) % p;
	r = (r*r) % p;
	if (k % 2)r = (r*n) % p;
	return r;
}


int main()
{
	int t, n, m;
	cin >> t;
	while (t--)
	{
		cin >> n >> m >> p;
		long long r = 1;
		for (int i = 1; i <= m; i++)r = (r*(n - i + 1) % p)*get_mi(i, p - 2) % p;
		cout << r << endl;
	}
	return 0;
}

结果AC了,不过不快,703ms

用快速幂求逆元自然是必须用到的,上述的代码只用了这个。

如果再用上卢卡斯定理,肯定会快一些,快多少就不好说了,要看给的数据是什么情况。

代码:

#include<iostream>
using namespace std;

int p;

long long get_mi(int n, int k)
{
	if (k == 0)return 1;
	long long r = get_mi(n, k / 2) % p;
	r = (r*r) % p;
	if (k % 2)r = (r*n) % p;
	return r;
}

int f(int n, int m)
{
	long long r = 1;
	if (n > p)r = f(n / p, m / p)*f(n%p, m%p) % p;
	else for (int i = 1; i <= m; i++)r = (r*(n - i + 1) % p)*get_mi(i, p - 2) % p;
	return r;
}

int main()
{
	int t, n, m;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d%d%d", &n, &m, &p);
		printf("%d\n", f(n, m));
	}
	return 0;
}

然而结果还是703ms,数据体现不出这个算法的威力。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值