目录
一,基本概念
1,无穷远点
平面内有唯一的一个无穷远点。
如果一个平面内两条直线平行,那么这两条直线就交于无穷远点。
2,圆、切线
把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限。
二,对偶原理
在射影平面上,如果在一个射影定理中把点与直线的观念对调,即把点改成直线,把直线改成点,把点的共线关系改成直线的共点关系,所得的命题仍然成立,这称为对偶原则。
如帕斯卡定理和布列安桑定理就是对偶定理。
三,仿射和透视
https://blog.csdn.net/nameofcsdn/article/details/118523120
四,帕斯卡定理、布列安桑定理
1,帕斯卡(Pascal)定理
帕斯卡定理指圆锥曲线内接六边形(包括退化的六边形)其三对边的交点共线。
2,布列安桑(Brianchon,布里昂雄)定理
六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点。
五,帕普斯定理、帕普斯定理的对偶
1,帕普斯(Pappus)定理
显然帕普斯定理是帕斯卡定理的退化
2,帕普斯定理的对偶
帕普斯定理的对偶是布列安桑定理的退化