一,均值,方差,标准差
均值
方差
标准差
二,矩、原点矩
设X是随机变量,若(k=1,2,...) 存在,则称它为随机变量X对a的k阶矩。
如果a=0,则称它为X的k阶原点矩,记作
一阶原点矩就是均值。
k阶原点矩就是k阶范数的k次方 https://blog.csdn.net/nameofcsdn/article/details/118499279
三,中心矩
如果a=E(X),则称它为X的k阶中心矩,记作
一阶中心矩恒等于零,二阶中心矩就是方差。
四,OJ实战
51Nod - 1098 最小方差
给出M个数,从中找出N个数,使这N个数方差最小。
Input
第1行:2个数M,N,(M > N, M <= 10000) 第2 - M + 1行:M个数的具体值(0 <= Xi <= 10000)
Output
输出最小方差 * N的整数部分。
Sample Input
5 3
1
2
3
4
5
Sample Output
2
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
long long m,n,x[10005];
cin>>m>>n;
for(int i=0;i<m;i++)cin>>x[i];
sort(x,x+m);
long long s1=0,s2,ans=0,res;
for(int i=0;i<n;i++)s1+=x[i],ans+=x[i]*x[i]*n;
ans-=s1*s1,res=ans;
for(int i=n;i<m;i++){
s2=s1+x[i]-x[i-n],ans+=(x[i]*x[i]-x[i-n]*x[i-n])*n-(x[i]-x[i-n])*(s1+s2);
s1=s2,res=min(res,ans);
}
cout<<res/n;
return 0;
}