统计特征

一,均值,方差,标准差

均值E(X) = \frac{1}{n}\sum_{i=1}^nx_i

方差S^2=\frac{1}{n}\sum_{i=1}^n(x_i-E)^2=E(X^2)-E(X)^2

标准差S=\sqrt {\frac{1}{n}\sum_{i=1}^n(x_i-E)^2}

二,矩、原点矩

设X是随机变量,若E((X-a)^k)(k=1,2,...) 存在,则称它为随机变量X对a的k阶矩。

如果a=0,则称它为X的k阶原点矩,记作v_k(X)

v_k(X) = E(X^k)

 一阶原点矩就是均值。

k阶原点矩就是k阶范数的k次方 https://blog.csdn.net/nameofcsdn/article/details/118499279

三,中心矩

如果a=E(X),则称它为X的k阶中心矩,记作\mu _k(X)

 \mu _k(X)=E((X-E(X))^k)

一阶中心矩恒等于零,二阶中心矩就是方差。

 

四,OJ实战

51Nod - 1098 最小方差

给出M个数,从中找出N个数,使这N个数方差最小。

Input

第1行:2个数M,N,(M > N, M <= 10000) 第2 - M + 1行:M个数的具体值(0 <= Xi <= 10000)

Output

输出最小方差 * N的整数部分。

Sample Input

5 3
1
2
3
4
5

Sample Output

2
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
    long long m,n,x[10005];
	cin>>m>>n;
	for(int i=0;i<m;i++)cin>>x[i];
	sort(x,x+m);
	long long s1=0,s2,ans=0,res;
	for(int i=0;i<n;i++)s1+=x[i],ans+=x[i]*x[i]*n;
	ans-=s1*s1,res=ans;
	for(int i=n;i<m;i++){
	    s2=s1+x[i]-x[i-n],ans+=(x[i]*x[i]-x[i-n]*x[i-n])*n-(x[i]-x[i-n])*(s1+s2);
	    s1=s2,res=min(res,ans);
	}
	cout<<res/n;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值