puzzle(0511)《计算》元素划分、斯特林数、贝尔数

目录

一,不同元素的划分——斯特林数(Stirling数)

1,第一类斯特林数

2,第二类斯特林数

3,斯特林数的性质

二,贝尔数

1,贝尔数

2,贝尔数的递推式

3,OJ实战

FZU 1570 集合划分问题

4,有序贝尔数

5,有序贝尔数的递推式

三,相同元素的划分

HDU 2566 统计硬币(常数时间解法)

POJ 1664 放苹果

九度OJ 1084 整数拆分


一,不同元素的划分——斯特林数(Stirling数)

1,第一类斯特林数

2,第二类斯特林数

3,斯特林数的性质

\sum_{k=0}^{n}\left[\begin{array}{l} n \\ k \end{array}\right]=n !

x^{n}=\sum_{k}\left\{\begin{array}{l} n \\ k \end{array}\right\} x^{\underline k} =\sum_{k}\left\{\begin{array}{l} n \\ k \end{array}\right\}(-1)^{n-k} x^{\bar k}

x^{\underline n}=\sum_{k}\left[\begin{array}{l} n \\ k \end{array}\right](-1)^{n-k} x^{k}x^{n}=\sum_{k}\left[\begin{array}{l} n \\ k \end{array}\right](-1)^{n-k} x^{k}

x^{\bar{n}}=\sum_{k}\left[\begin{array}{l} n \\ k \end{array}\right] x^{k}

二,贝尔数

1,贝尔数

Bn是基数为n的集合划分数目。

其中S是第二类斯特林数

例如,

B1=1,

B2=1+1=2,

B3=1=3+1=5,

B4 = 1+7+6+1 = 15,

B5=1+15+25+10+1=52

2,贝尔数的递推式

3,OJ实战

FZU 1570 集合划分问题

题目:
Description

n个元素的集合{1,2,...,n}可以划分若干个非空子集。例如,当n=4时,集合{1,2,3,4}可以划分为15个不同的非空子集如下:

 
{ {1},{2},{3},{4}},
{ {1,2},{3},{4}},
{ {1,3},{2},{4}},
{ {1,4},{2},{3}},
{ {2,3},{1},{4}},
{ {2,4},{1},{3}},
{ {3,4},{1},{2}},
{ {1,2},{3,4}},
{ {1,3},{2,4}},
{ {1,4},{2,3}},
{ {1,2,3},{4}},
{ {1,2,4},{3}},
{ {1,3,4},{2}},
{ {2,3,4},{1}},
{ {1,2,3,4}}
给定正整数n(1<=n<=20),计算出n个元素的集合{1,2,...,n} 可以化为多少个不同的非空子集。

Input

多组输入数据,每组数据1行,表示元素个数n.
Output

对于每组数据,输出一行一个数,表示不同的非空子集的个数。
Sample Input

2
4
Sample Output

2
15

用递归法求出第二类Stirling数,然后求和得到sum即为答案。

代码:

#include<iostream>
using namespace std;

const int l = 21;
long long Stirling[l][l];
long long sum[l];

void getStirling()
{
	for (int i = 0; i < l; i++)
	{
		sum[i] = 0;
		for (int j = 0; j < l; j++)Stirling[i][j] = 0;
	}
	Stirling[0][0] = 1;
	for (int i = 1; i < l; i++)for (int j = 1; j <= i; j++)
	{
		Stirling[i][j] = Stirling[i - 1][j - 1] + Stirling[i - 1][j] * j;
		sum[i] += Stirling[i][j];
	}
}

int main()
{
	getStirling();
	int n;
	while (cin >> n)cout << sum[n] << endl;
	return 0;
}

4,有序贝尔数

OB_n = \sum_{k=1}^n k!S(n,k)

其中S是第二类斯特林数

例如,OB(0)=1, OB(1)=1, OB(2)=3, OB(3)=13, OB(4)=75

5,有序贝尔数的递推式

OB_n=\sum_{k=1}^n\binom{n}{k}OB_{n-k}

三,相同元素的划分

HDU 2566 统计硬币(常数时间解法)

题目:
Description

假设一堆由1分、2分、5分组成的n个硬币总面值为m分,求一共有多少种可能的组合方式(某种面值的硬币可以数量可以为0)。
Input

输入数据第一行有一个正整数T,表示有T组测试数据; 
接下来的T行,每行有两个数n,m,n和m的含义同上。 
Output

对于每组测试数据,请输出可能的组合方式数; 
每组输出占一行。 
Sample Input

2
3 5
4 8
Sample Output

1
2

首先判断n*5>=m是否成立,如果不成立的话,方案数就是0了

如果n*5>=m,那么5分硬币的数量可能是0,1,2......m/5

假设5分硬币的数目是i,0<=i<=m/5

那么现在就是考虑,n-i个1分和2分的硬币组成m-i*5分有多少种方案?

规律很简单,如果n-i<=m-i*5<=(n-i)*2那么方案数为1,否则为0

综上所述,如果n*5<m那么方案数为0,否则,方案数是闭区间[0,m/5]和闭区间[(m-n*2)/3.0,m-n/4]的交集所包含的整数的数量,之间用交集的上界减下界即可。

代码:
 

#include <iostream>
using namespace std;

int f(int n, int m)
{
	if (n * 5 < m || m < n)return 0;
	int up = n * 5, down = 0;
	if ((m - n) / 4 < up)up = (m - n) / 4;
	if ((m - n * 2) >= 3)down = (m - n * 2 + 2) / 3;
	return up-down+1;
}

int main()
{
	int t, n, m;
	cin >> t;
	while (t--)
	{
		cin >> n >> m;
		cout << f(n, m) << endl;
	}
	return 0;
}

POJ 1664 放苹果

题目:
Description

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
Output

对输入的每组数据M和N,用一行输出相应的K。
Sample Input

1
7 3
Sample Output

8

这个题目自然是递归,但不是所有人的递归式都是一样的。

假设本题对应的答案是list[n][m],n,m非负,

那么首先,当n为0时list[0][i] = (i == 0);

其次,找递归式。

如果这n个盘子里面,存在空盘子,那么去掉它,就变成“把m个相同的苹果放入n-1个相同的盘子”这个子问题了。

否则,每个盘子都至少有1个苹果,那么去掉这n个苹果,就变成“把m-n个苹果放入n个相同的盘子”这个子问题了。

所以,递归式就是list[n][m]=list[n-1][m]+list[n][m-n]
代码:

#include<iostream>
#include<stdio.h>
using namespace std;

const int l = 11;
int list[l][l];

void getList()
{
	for (int i = 0; i < l; i++)list[0][i] = (i == 0);
	for (int i = 1; i < l; i++)for (int j = 0; j < l; j++)
	{
		list[i][j] = list[i - 1][j];
		if (j >= i)list[i][j] += list[i][j - i];
	}
}

int main()
{
	getList();
	int t, m, n;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d%d", &m, &n);
		printf("%d\n", list[n][m]);
	}
	return 0;
}

九度OJ 1084 整数拆分

题目描述:
一个整数总可以拆分为2的幂的和,例如:
7=1+2+4
7=1+2+2+2
7=1+1+1+4
7=1+1+1+2+2
7=1+1+1+1+1+2
7=1+1+1+1+1+1+1
总共有六种不同的拆分方式。
再比如:4可以拆分成:4 = 4,4 = 1 + 1 + 1 + 1,4 = 2 + 2,4=1+1+2。
用f(n)表示n的不同拆分的种数,例如f(7)=6.
要求编写程序,读入n(不超过1000000),输出f(n)%1000000000。

输入:
每组输入包括一个整数:N(1<=N<=1000000)。

输出:
对于每组数据,输出f(n)%1000000000。

样例输入:
7
样例输出:
6

这个题目找递推式的方法,和 POJ - 1664 放苹果 本质差不多

代码:

#include<iostream>
using namespace std;

int list[1000001];

int main()
{
	list[1] = 1, list[2] = 2;
	for (int i = 3; i <= 1000000; i++)list[i] = (list[i - 2] + list[i / 2]) % 1000000000;
	int n;
	while (cin >> n)cout << list[n] << endl;	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值