前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:点击跳转
〇,前言
本文收录总结我个人知道的一些抽象概念,这些概念在不同的领域使用同一个名字,在不同的领域中乍看含义并不一样,但是深思之后却又能找到深刻的联系。
一,对称性
1,几何中的对称性
(1)轴对称
(2)中心对称
2,物理中的对称性
由于我的物理学习只停留在高考之前,所以我只能以在网上复制一段,我本人也不是完全懂里面的细节。
诺特定理:如果一个物理系统具有某种连续对称性,那么这个系统存在一个相应的守恒定律。
例如,如果一个系统的拉格朗日函数在时间平移下不变,那么这个系统将具有能量守恒的性质;如果系统在空间平移下不变,那么动量守恒;如果系统在空间旋转下不变,那么角动量守恒。
3,组合数学中的轮换对称性
组合数学中,有很多结构上的对称性。
(1)复原魔方单面
如果你学习了一个公式,使得魔方无论怎么打乱再给你,你都有办法复原红色面,那么,你就一定拥有一个能力,魔方无论怎么打乱再给你,你都有办法复原绿色面。
所以我们说,对于复原魔方单面这个问题,红色和绿色具有对称性。
更进一步,我们可以说,复原魔方单面这个问题,任意两个颜色之间都具有对称性。
(2)复原魔方对立两面
魔方的固定对立色是(白黄)(绿蓝)(红橙)
如果你学习了一个公式,使得魔方无论怎么打乱再给你,你都有办法复原白黄两面,那么,你就一定拥有一个能力,魔方无论怎么打乱再给你,你都有办法复原绿蓝两面。
更进一步,我们可以说,复原魔方对立两面这个问题,(白黄)(绿蓝)(红橙)三组之间任意两组都具有对称性。
(3)复原魔方相邻两面
如果你学习了一个公式,使得魔方无论怎么打乱再给你,你都有办法复原红白两面,那么,你就一定拥有一个能力,魔方无论怎么打乱再给你,你都有办法复原绿橙两面。
我们可以说,红白两面和绿橙两面具有对称性。
但是,我们不能说红白两面和白黄两面具有对称性。
(4)轮换对称性
上面三个关于魔方的例子,都可以总结为轮换对称性,这个在组合数学中很常见。
对于不同的问题,什么叫轮换,其实是不一样的。
对于我上面的三个例子,轮换就是不操作魔方,只把整个魔方的朝向调整一下,这是比较简单的一种轮换,魔方中有很多更复杂的轮换,可以在我的魔方系列文章中深挖一下。
(5)数独中的轮换对称性
我在旋转数独这个puzzle中给出的如下的解法:
- 单个九宫格可以填充的数字就填充
- 选择一个出现较多的数字,把它的9个位置都确定下来
- 选择一个数字较多的九宫格,确定和它在同一行的2个九宫格,把这3个九宫格都移到第一行
- 剩下的6个九宫格里面,再选择一个数字较多的九宫格,确定和它在同一行的2个九宫格,把这3个九宫格都移到第二行(第一行的3个九宫格位置不动)
- 只根据行的信息和单个九宫格的信息,可以填充的数字就填充
- 第一行的3个九宫格位置固定不动,让第二行的3个九宫格之间互换,再让第三行的3个九宫格之间互换,使得数独有解
- 直接完成数独
其实这里的逻辑是基于标准数独的轮换对称性:
把9个九宫格看成3行3列的矩阵,完整的数独(填充了81个数字且满足数独的规则)交换任意2行得到的仍然是完整的数独,交换任意2列得到的也仍然是完整的数独。
(6)波利亚计数
波利亚计数参考这里。
这个神奇且强大的定理,让我对“对称性”的看法,从模糊的概念,变成有深刻内涵的科学术语。
(7)方旋矩理1
最强大脑第12季的项目,规则如下:
5种颜色各25个块,构成5*5*5的立方体。
操作方式和五阶魔方一样,打乱之后复原,使得每一层的25个块同色。
显然,第一个问题就是思考5个颜色从高到低怎么排。
首先,很显然中间层的颜色是确定的,因为最中间的块是不动的,例如上图就是蓝色块,我们称之为中心色。
其次,类比五阶魔方的六个中心块,这6个块是一个封闭的集合,所以一定是4个中心色加上另外2个颜色的块各1个,例如上图就是红色和绿色,我们称之为两端色,剩下的白色和黄色我们称之为夹心色。
最后,五种颜色具体怎么排布呢?是四种组合都可以吗?
这里根据轮换对称性,不妨设第二层就是固定白色,第四层就是固定黄色,只有2个两端色是位置排布是不确定的。
这里是如何轮换对称的?很简单,只需要5次旋转180的操作,就可以把整个立方体上下颠倒。
那么,在此基础上,是否可以不妨设第一层就是固定红色?其实这个问题的答案取决于,一个已经复原的立方体,能不能通过有限次操作,只把第一层和第五层单独交换?
由于没法实操,只能冥想,我暂时不确定这个独立的小问题的答案。
那么,在不知道这个答案的情况下,我们对方旋矩理确定颜色排布这个问题的答案总结下来就是:首先确定中心色和2个两端色和2个夹心色,指定2个夹心色的任意排布即可,唯一不确定的就是2个两端色怎么排布,整个立方体仅有的2种完整颜色排布方案至少有一种是可达状态。
4,桌游中的轮换对称性
桌游中也存在各种形式的轮换对称性,有一些桌游中的对称性规律和策略无关,而我下面列举的,都是轮换对称性会影响策略的例子。
(1)璀璨宝石
璀璨宝石规则参考这里。
宝石中一共有5种颜色,有的卡牌是5张一组,具有轮换对称性,
比如:
再比如:
而有的卡牌不具有轮换对称性,比如:
用置换群来表达的话,上面的5分牌和4分牌都是1个5阶群,而下面的2分牌是1个3阶群,2个1阶群。
由于黑白红处于1个3阶群中,蓝绿各处于1个1阶群中,所以很多宝石策略都会把5个颜色分成2个阵营,即蓝绿阵营和黑白红阵营。
(2)香料物语
略。
香料物语参考这里。
5,高阶轮换对称性
(1)方旋矩理2
上文《方旋矩理1》中,我们得到了两端色是红色和绿色,夹心色是黄色和白色。
只根据“可以把整个立方体上下颠倒”这个轮换对称性,我们就可以得到“不妨设第二层就是固定白色,第四层就是固定黄色,只有2个两端色的排布不确定”。
其实我们也可以得到“不妨设第一层就是固定红色,第五层就是固定绿色,只有2个夹心色的排布不确定”。
那么,这2种选择哪一种来作为方旋矩理确定颜色排布的阶段性成果总结呢?
答案是都可以,不妨设就用第一种。
这就是更高阶的一种轮换对称性。
二,不妨设
所有的不妨设,都是对称性。
1,方旋矩理3
上文的《方旋矩理1》中,根据轮换对称性得到“不妨设第二层就是固定白色,第四层就是固定黄色,只有2个两端色的排布不确定”。
上文的《方旋矩理2》中,则是更高阶的轮换对称性。
这2处我都用到了不妨设。
2,齐次性
证明:
首先,如果xy<=0,则不等式成立。
其次,如果xy>0,则不妨设x>0 y>0
最后,如果x>0 y>0,则不妨设xy=1
这里,我们又用了2次不妨设。
3,变量的强对称性
这里的x y z是两两对称的,所以不妨设x>=y>=z
4,变量的弱对称性
这里不妨设a>=b>=c就是错的,但是不妨设a>=b且a>=c就是对的。
三,等价
这个概念在极其多的领域中应用,表面上看起来在不同领域中含义都不一样,五花八门,但实际上应该都可以抽象成离散数学中的等价。
1,等价的题目
老师经常说,这2个题目不是一样的吗?这2个题目有什么区别吗?
这就是2个不同的题目个体具有等价性。
二元关系参考这里。
一个大概的二元关系模型是,用多维空间中的点表示一个题目的解法,如果2个点距离小于某个阈值,则连一条边。
如果这个阈值设置的比较小,就会形成自反、对称、传递、不连通的二元关系。
如果这个阈值设置的比较大,就会形成自反、对称、传递、连通的二元关系(平凡等价关系)。
这两种二元关系,都可以叫等价关系。当然,平凡等价关系不太适合用于描述题目之间的等价关系。
2,等价的什么?
持续更新中,欢迎读者留言补充
四,相似
怎么样算相似呢?相似可以描述哪些对象呢?数值,外观,逻辑,等等
王博老师的培训课给了我启发。
1,相似的题目
怎么样的2个题目算是相似的题目?
(1)只有数字不同的题目
很多人第一反应应该就是,题目完全相同,只有数字不一样的2个题目,肯定是相似题目,实际上真的如此吗?我们看一下2个例子。
题目一:
x+y=1
x*y=-2
求(x^2024+y^2024)%7
解法:
求解方程组,有2个解:
x=-1,y=2
x=2,y=-1
所以(x^2024+y^2024)%7=(2^2024 - 1)%7=3
题目二:
x-y=2
x*y=7
x>0
求(x^2024+y^2024)%7
解法:
求解方程组,有2个解,满足x>0的只有x=2*sqrt(2)+1, y=2*sqrt(2)-1这一个解。
所以首先,(x^2024+y^2024)显然是一个整数。
其次:
题目三:
x-y=1
x*y=1
x>0
求(x^2024+y^2024)%7
解法:
求解方程组,有2个解,满足x>0的只有x=(sqrt(5)+1)/2, y=(sqrt(5)-1)/2这一个解。
所以首先,(x^2024+y^2024)显然是一个整数。
其次:
这个比上一题更加的复杂,但是也确实有办法手算出来。
所以,读者认为这3个题目相似吗?
严谨的说,应该是题干相似,解法不相似,如果把题目理解成题干+解法,那么显然这3个题目并没有想象中的那么相似。
2,相似的游戏
举一个抽象程度比较高的相似的例子:回合制贪吃蛇 里面的霸屏问题,和2048最大分数 里面的达成最大分数问题,就很相似。
这种相似,是抽象程度比较高的,比较复杂的一种相似。这种相似,主要是核心难点和启发式策略的相似,即固定矩形空间内的排兵布阵,动态调整,最终占满。
而2048和数字消除问题里面的Threes的相似,就是抽象程度比较低的一种相似。这种相似,主要是规则的相似。
五,结构化
1,结构化数据
2,结构化游戏
六,算法、遗忘算法、解空间、对象空间
1,算法
一个魔方公式也可以看做一个算法
这里可能涉及停机问题和公理系统的可判定性之间的关系
2,遗忘算法
3,解空间
参考
七,元
另外一篇文章中的元剪切过来
1,元算法
元算法,即基于算法的算法。
比如算法的轴对称算法。
八,阶
九,自我指涉
十,离散和连续
十一,反演、对偶、共轭
十二,全文总结
本文的每一章,并不是完全无关的概念。
比如,很多情况下对称性也是相似的一种。
比如,我们可能把相似的东西称为,这不是一样吗,也可能把等价的东西称为,这不是一样的吗。
比如,元其实就是二阶,也是一种自我指涉。