跨领域的抽象概念

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:点击跳转

〇,前言

本文收录总结我个人知道的一些抽象概念,这些概念在不同的领域使用同一个名字,在不同的领域中乍看含义并不一样,但是深思之后却又能找到深刻的联系。

一,对称性

1,几何中的对称性

(1)轴对称

(2)中心对称

2,物理中的对称性

由于我的物理学习只停留在高考之前,所以我只能以在网上复制一段,我本人也不是完全懂里面的细节。

诺特定理:如果一个物理系统具有某种连续对称性,那么这个系统存在一个相应的守恒定律。

例如,如果一个系统的拉格朗日函数在时间平移下不变,那么这个系统将具有能量守恒的性质;如果系统在空间平移下不变,那么动量守恒;如果系统在空间旋转下不变,那么角动量守恒。

3,组合数学中的轮换对称性

组合数学中,有很多结构上的对称性。

(1)复原魔方单面

如果你学习了一个公式,使得魔方无论怎么打乱再给你,你都有办法复原红色面,那么,你就一定拥有一个能力,魔方无论怎么打乱再给你,你都有办法复原绿色面。

所以我们说,对于复原魔方单面这个问题,红色和绿色具有对称性。

更进一步,我们可以说,复原魔方单面这个问题,任意两个颜色之间都具有对称性。

(2)复原魔方对立两面

魔方的固定对立色是(白黄)(绿蓝)(红橙)

如果你学习了一个公式,使得魔方无论怎么打乱再给你,你都有办法复原白黄两面,那么,你就一定拥有一个能力,魔方无论怎么打乱再给你,你都有办法复原绿蓝两面。

更进一步,我们可以说,复原魔方对立两面这个问题,(白黄)(绿蓝)(红橙)三组之间任意两组都具有对称性。

(3)复原魔方相邻两面

如果你学习了一个公式,使得魔方无论怎么打乱再给你,你都有办法复原红白两面,那么,你就一定拥有一个能力,魔方无论怎么打乱再给你,你都有办法复原绿橙两面。

我们可以说,红白两面和绿橙两面具有对称性。

但是,我们不能说红白两面和白黄两面具有对称性。

(4)轮换对称性

上面三个关于魔方的例子,都可以总结为轮换对称性,这个在组合数学中很常见。

对于不同的问题,什么叫轮换,其实是不一样的。

对于我上面的三个例子,轮换就是不操作魔方,只把整个魔方的朝向调整一下,这是比较简单的一种轮换,魔方中有很多更复杂的轮换,可以在我的魔方系列文章中深挖一下。

(5)数独中的轮换对称性

我在旋转数独这个puzzle中给出的如下的解法:

  • 单个九宫格可以填充的数字就填充
  • 选择一个出现较多的数字,把它的9个位置都确定下来
  • 选择一个数字较多的九宫格,确定和它在同一行的2个九宫格,把这3个九宫格都移到第一行
  • 剩下的6个九宫格里面,再选择一个数字较多的九宫格,确定和它在同一行的2个九宫格,把这3个九宫格都移到第二行(第一行的3个九宫格位置不动)
  • 只根据行的信息和单个九宫格的信息,可以填充的数字就填充
  • 第一行的3个九宫格位置固定不动,让第二行的3个九宫格之间互换,再让第三行的3个九宫格之间互换,使得数独有解
  • 直接完成数独

其实这里的逻辑是基于标准数独的轮换对称性:

把9个九宫格看成3行3列的矩阵,完整的数独(填充了81个数字且满足数独的规则)交换任意2行得到的仍然是完整的数独,交换任意2列得到的也仍然是完整的数独。

 (6)波利亚计数

波利亚计数参考这里

这个神奇且强大的定理,让我对“对称性”的看法,从模糊的概念,变成有深刻内涵的科学术语。

(7)方旋矩理1

最强大脑第12季的项目,规则如下:

5种颜色各25个块,构成5*5*5的立方体。

操作方式和五阶魔方一样,打乱之后复原,使得每一层的25个块同色。

显然,第一个问题就是思考5个颜色从高到低怎么排。

首先,很显然中间层的颜色是确定的,因为最中间的块是不动的,例如上图就是蓝色块,我们称之为中心色。

其次,类比五阶魔方的六个中心块,这6个块是一个封闭的集合,所以一定是4个中心色加上另外2个颜色的块各1个,例如上图就是红色和绿色,我们称之为两端色,剩下的白色和黄色我们称之为夹心色。

最后,五种颜色具体怎么排布呢?是四种组合都可以吗?

这里根据轮换对称性,不妨设第二层就是固定白色,第四层就是固定黄色,只有2个两端色是位置排布是不确定的。

这里是如何轮换对称的?很简单,只需要5次旋转180的操作,就可以把整个立方体上下颠倒。

那么,在此基础上,是否可以不妨设第一层就是固定红色?其实这个问题的答案取决于,一个已经复原的立方体,能不能通过有限次操作,只把第一层和第五层单独交换?

由于没法实操,只能冥想,我暂时不确定这个独立的小问题的答案。

那么,在不知道这个答案的情况下,我们对方旋矩理确定颜色排布这个问题的答案总结下来就是:首先确定中心色和2个两端色和2个夹心色,指定2个夹心色的任意排布即可,唯一不确定的就是2个两端色怎么排布,整个立方体仅有的2种完整颜色排布方案至少有一种是可达状态。

4,桌游中的轮换对称性

桌游中也存在各种形式的轮换对称性,有一些桌游中的对称性规律和策略无关,而我下面列举的,都是轮换对称性会影响策略的例子。

(1)璀璨宝石

璀璨宝石规则参考这里

宝石中一共有5种颜色,有的卡牌是5张一组,具有轮换对称性,

比如:

再比如:

而有的卡牌不具有轮换对称性,比如:

用置换群来表达的话,上面的5分牌和4分牌都是1个5阶群,而下面的2分牌是1个3阶群,2个1阶群。

由于黑白红处于1个3阶群中,蓝绿各处于1个1阶群中,所以很多宝石策略都会把5个颜色分成2个阵营,即蓝绿阵营和黑白红阵营。

(2)香料物语

略。

香料物语参考这里

5,高阶轮换对称性

(1)方旋矩理2

上文《方旋矩理1》中,我们得到了两端色是红色和绿色,夹心色是黄色和白色。

只根据“可以把整个立方体上下颠倒”这个轮换对称性,我们就可以得到“不妨设第二层就是固定白色,第四层就是固定黄色,只有2个两端色的排布不确定”。

其实我们也可以得到“不妨设第一层就是固定红色,第五层就是固定绿色,只有2个夹心色的排布不确定”。

那么,这2种选择哪一种来作为方旋矩理确定颜色排布的阶段性成果总结呢?

答案是都可以,不妨设就用第一种。

这就是更高阶的一种轮换对称性。

二,不妨设

所有的不妨设,都是对称性。

1,方旋矩理3

上文的《方旋矩理1》中,根据轮换对称性得到“不妨设第二层就是固定白色,第四层就是固定黄色,只有2个两端色的排布不确定”。

上文的《方旋矩理2》中,则是更高阶的轮换对称性。

这2处我都用到了不妨设。

2,齐次性

证明:

首先,如果xy<=0,则不等式成立。

其次,如果xy>0,则不妨设x>0 y>0

最后,如果x>0 y>0,则不妨设xy=1

这里,我们又用了2次不妨设。

3,变量的强对称性

这里的x y z是两两对称的,所以不妨设x>=y>=z

4,变量的弱对称性

这里不妨设a>=b>=c就是错的,但是不妨设a>=b且a>=c就是对的。

三,等价

这个概念在极其多的领域中应用,表面上看起来在不同领域中含义都不一样,五花八门,但实际上应该都可以抽象成离散数学中的等价。

1,等价的题目

老师经常说,这2个题目不是一样的吗?这2个题目有什么区别吗?

这就是2个不同的题目个体具有等价性。

二元关系参考这里

一个大概的二元关系模型是,用多维空间中的点表示一个题目的解法,如果2个点距离小于某个阈值,则连一条边。

如果这个阈值设置的比较小,就会形成自反、对称、传递、不连通的二元关系。

如果这个阈值设置的比较大,就会形成自反、对称、传递、连通的二元关系(平凡等价关系)。

这两种二元关系,都可以叫等价关系。当然,平凡等价关系不太适合用于描述题目之间的等价关系。

2,等价的什么?

持续更新中,欢迎读者留言补充

四,相似

怎么样算相似呢?相似可以描述哪些对象呢?数值,外观,逻辑,等等

王博老师的培训课给了我启发。

1,相似的题目

怎么样的2个题目算是相似的题目?

(1)只有数字不同的题目

很多人第一反应应该就是,题目完全相同,只有数字不一样的2个题目,肯定是相似题目,实际上真的如此吗?我们看一下2个例子。

题目一:

x+y=1
x*y=-2
求(x^2024+y^2024)%7

解法:

求解方程组,有2个解:
x=-1,y=2
x=2,y=-1
所以(x^2024+y^2024)%7=(2^2024 - 1)%7=3

题目二:

x-y=2
x*y=7
x>0
求(x^2024+y^2024)%7

解法:

求解方程组,有2个解,满足x>0的只有x=2*sqrt(2)+1, y=2*sqrt(2)-1这一个解。
所以首先,(x^2024+y^2024)显然是一个整数。
其次:

题目三:

x-y=1
x*y=1
x>0
求(x^2024+y^2024)%7

解法:

求解方程组,有2个解,满足x>0的只有x=(sqrt(5)+1)/2, y=(sqrt(5)-1)/2这一个解。
所以首先,(x^2024+y^2024)显然是一个整数。
其次:

这个比上一题更加的复杂,但是也确实有办法手算出来。

所以,读者认为这3个题目相似吗?

严谨的说,应该是题干相似,解法不相似,如果把题目理解成题干+解法,那么显然这3个题目并没有想象中的那么相似。

2,相似的游戏

举一个抽象程度比较高的相似的例子:回合制贪吃蛇 里面的霸屏问题,和2048最大分数 里面的达成最大分数问题,就很相似。

这种相似,是抽象程度比较高的,比较复杂的一种相似。这种相似,主要是核心难点和启发式策略的相似,即固定矩形空间内的排兵布阵,动态调整,最终占满。

而2048和数字消除问题里面的Threes的相似,就是抽象程度比较低的一种相似。这种相似,主要是规则的相似。

五,结构化

1,结构化数据

2,结构化游戏

六,算法、遗忘算法、解空间、对象空间

1,算法

一个魔方公式也可以看做一个算法

这里可能涉及停机问题和公理系统的可判定性之间的关系

2,遗忘算法

3,解空间

参考

七,元

另外一篇文章中的元剪切过来

1,元算法

元算法,即基于算法的算法。

比如算法的轴对称算法。

八,阶

九,自我指涉

十,离散和连续

十一,反演、对偶、共轭

参考数据变换、反演、对偶、共轭

十二,全文总结

本文的每一章,并不是完全无关的概念。

比如,很多情况下对称性也是相似的一种。

比如,我们可能把相似的东西称为,这不是一样吗,也可能把等价的东西称为,这不是一样的吗。

比如,元其实就是二阶,也是一种自我指涉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值