Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
这个就是求所有上升区间的最大差的和,下降的区间就不用管了,每一个上升区间都进行一次收益累加。
//9:07 from the valley bottom to the summit, just count the height difference.
class Solution {
public:
int maxProfit(vector<int> &prices) {
int res = 0,i,n = prices.size();
if(prices.size()<2)
{
return res;
}
int lowStart = prices[0],tmpRes =0;
int up = 0;//up为1处于上升区域。up为零,处于下降区域,处理好山坡和山谷临界点上的价格
for(i=1;i<n;i++)
{
if(prices[i]>prices[i-1])
{
if(up==0)
{
up = 1;
lowStart = prices[i-1];
}
}else if(prices[i]<prices[i-1])
{
if(up==1)
{
up = 0;
tmpRes = prices[i-1] - lowStart;
res += tmpRes;
}
}
}
//遗留的状态
if(up==1)
{
res += (prices[n-1] - lowStart);
up = 0;
}
return res;
}
};