python版——>leetcode 05:最长回文子串(python)
题目
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: “babad”
输出: “bab”
注意: “aba” 也是一个有效答案。
示例 2:
输入: “cbbd”
输出: “bb”
来源:5. 最长回文子串 - 力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
中心扩展法
- 把字符串中每个字符作为中心,往两边扩展
注意区分奇偶回文子串的区别(即"ada"或"adda")
代码如下:
class Solution {
public:
string longestPalindrome(string s) {
int len = s.length();
if(len < 2) return s;
int maxlen = 1;
int index = 0;
for(int i = 0;i < len;i++)
{
int l1 = i;
int r1 = i;
//处理奇回文串
while(l1 >= 0 && r1 < len && s[l1] == s[r1])
{
l1--;
r1++;
}
if(maxlen < r1 - l1 - 1)
{
maxlen = r1 - l1 - 1;
index = l1 + 1;
}
//处理偶回文串
int l2 = i;
int r2 = i + 1;
while(l2 >= 0 && r2 < len && s[l2] == s[r2])
{
l2--;
r2++;
}
if(maxlen < r2 - l2 - 1)
{
maxlen = r2 - l2 - 1;
index = l2 + 1;
}
}
return s.substr(index,maxlen);
}
};
结果:
动态规划法
- 将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
代码如下:
class Solution {
public:
string longestPalindrome(string s) {
int len = s.length();
if(len < 2) return s;
int maxlen = 1;
int index = 0;
//定义二维数组储存从i到j的字符串是否为回文串
int dp[len][len] = {{0}};
for(int r = 1;r < len;r++)
{
for(int l = 0;l < r;l++)
{
if(s[l] == s[r] && (r - l < 3 || dp[l + 1][r - 1] == 1))
{
dp[l][r] = 1;
if(maxlen < r - l + 1)
{
maxlen = r - l + 1;
index = l;
}
}
}
}
return s.substr(index,maxlen);
}
};
结果: