elasticsearch高级功能之聚合查询,是比较复杂的的高级功能,其中包含相关的统计功能,比如最大值、最小值、平均值、求和等,又比如筛选完数据后,还需要过滤筛选项,今天我们详细分析一下:
一、聚合指标
1、基本的统计指标
1.1、计算基本类型的平均值
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"avg": {
"field": "price"
}
}
}
}
1.2、计算非基本类型的平均值
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"avg": {
"field": "comment.properties.good"
}
}
}
}
java客户端:
public void getAvgAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest(" scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String aggName = "my_agg";//聚合的名称
//定义avg聚合,指定字段为价格
AvgAggregationBuilder aggregationBuilder = AggregationBuilders.avg(aggName).field("price");
searchSourceBuilder.aggregation(aggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Avg avg = aggregations.get(aggName);//获取avg聚合返回的对象
String key = avg.getName();//获取聚合名称
double avgValue = avg.getValue();//获取聚合值
System.out.println("key=" + key + ",avgValue=" + avgValue);//打印结果
}
1.3、返回多个统计数据
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"stats": {
"field": "price"
}
}
}
}
java客户端
public void getStatsAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String aggName = "my_agg";//聚合的名称
//定义stats聚合,指定字段为价格
StatsAggregationBuilder aggregationBuilder = AggregationBuilders.stats(aggName).field("price");
searchSourceBuilder.aggregation(aggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Stats stats = aggregations.get(aggName);//获取stats聚合返回的对象
String key = stats.getName();//获取聚合名称
double sumVal = stats.getSum();//获取聚合加和值
double avgVal = stats.getAvg();//获取聚合平均值
long countVal = stats.getCount();//获取聚合文档数量值
double maxVal = stats.getMax();//获取聚合最大值
double minVal = stats.getMin();//获取聚合最小值
System.out.println("key=" + key);//打印聚合名称
System.out.println("sumVal=" + sumVal + ",avgVal=" + avgVal + ",countVal=" + countVal + ",maxVal=" + maxVal + ",minVal=" + minVal);//打印结果
}
2、空值处理
2.1、基本类型非空值的个数
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"value_count": {
"field": "price"
}
}
}
}
java客户端
public void getValueCountAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String aggName = "my_agg";//聚合的名称
//定义value_count聚合,指定字段为价格
ValueCountAggregationBuilder aggregationBuilder = AggregationBuilders.count(aggName).field("price");
aggregationBuilder.missing("200");
searchSourceBuilder.aggregation(aggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
ValueCount valueCount = aggregations.get(aggName);//获取value_count聚合返回的对象
String key = valueCount.getName();//获取聚合名称
long count = valueCount.getValue();//获取聚合值
System.out.println("key=" + key + ",count=" + count);//打印结果
}
2.2、数组非空值个数
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"value_count": {
"field": "tag"
}
}
}
}
2.3、空值替换相加
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"sum": {
"field": "price",
"missing": 200
}
}
}
}
java客户端
public void getSumAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String aggName = "my_agg";//聚合的名称
//定义sum聚合,指定字段为价格
SumAggregationBuilder aggregationBuilder = AggregationBuilders.sum(aggName).field("price");
aggregationBuilder.missing("200");
searchSourceBuilder.aggregation(aggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Sum sum = aggregations.get(aggName);//获取sum聚合返回的对象
String key = sum.getName();//获取聚合名称
double sumVal = sum.getValue();//获取聚合值
System.out.println("key=" + key + ",count=" + sumVal);//打印结果
}
二、桶聚合查询
1、单维度桶聚合查询
1.1、按照城市聚合查询
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"terms": {
"field": "city"
}
}
}
}
java客户端
public void getBucketDocCountAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String termsAggName = "my_terms";//指定聚合的名称
//定义terms聚合,指定字段为城市
TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms(termsAggName).field("full_room");
searchSourceBuilder.aggregation(termsAggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(termsAggName);//获取聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {
String bucketKey = bucket.getKeyAsString();//获取桶名称
long docCount = bucket.getDocCount();//获取文档个数
System.out.println("termsKey=" + bucketKey + ",docCount=" + docCount);
}
}
1.2、范围聚合查询
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"range": {
"field": "price",
"ranges": [
{
"to": 20
},
{
"from": 100,
"to": 50
},
{
"from": 1000,
"to": 500
}
]
}
}
}
}
java客户端
public void getRangeDocCountAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String rangeAggName = "my_range";//sum聚合的名称
//定义range聚合,指定字段为price
RangeAggregationBuilder rangeAgg = AggregationBuilders.range(rangeAggName).field("price");
rangeAgg.addRange(new RangeAggregator.Range(null,null,200d));
rangeAgg.addRange(new RangeAggregator.Range(null,200d,500d));
rangeAgg.addRange(new RangeAggregator.Range(null,500d,null));
searchSourceBuilder.aggregation(rangeAgg);//添加range聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Range range = aggregations.get(rangeAggName);//获取range聚合返回的对象
for (Range.Bucket bucket : range.getBuckets()) {
String bucketKey = bucket.getKeyAsString();//获取桶名称
long docCount = bucket.getDocCount();//获取聚合文档个数
System.out.println("bucketKey=" + bucketKey + ",docCount=" + docCount);
}
}
1.3、按照城市维度聚合查询各城市的平均价格
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"terms": {
"field": "city"
},
"aggs": {
"my_sum": {
"sum": {
"field": "price",
"missing": 100
}
}
}
}
}
}
java客户端
public void getBucketAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String termsAggName = "my_terms";//sum聚合的名称
//定义terms聚合,指定字段为城市
TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms(termsAggName).field("city");
String sumAggName = "my_sum";//sum聚合的名称
//定义sum聚合,指定字段为价格
SumAggregationBuilder sumAggregationBuilder = AggregationBuilders.sum(sumAggName).field("price");
//定义聚合的父子关系
termsAggregationBuilder.subAggregation(sumAggregationBuilder);
searchSourceBuilder.aggregation(termsAggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(termsAggName);//获取sum聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {
String termsKey = bucket.getKey().toString();
System.out.println("termsKey=" + termsKey);
Sum sum = bucket.getAggregations().get(sumAggName);
String key = sum.getName();//获取聚合名称
double sumVal = sum.getValue();//获取聚合值
System.out.println("key=" + key + ",count=" + sumVal);//打印结果
}
}
2、多维度桶嵌套聚合查询
查询景区时搜索各城市的满房状态和平均价格等
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"group_city": {
"terms": {
"field": "city"
},
"aggs": {
"grup_full_room": {
"terms": {
"field": "full"
},
"aggs": {
"my_sum": {
"avg": {
"field": "price",
"missing": 100
}
}
}
}
}
}
}
}
java客户端
public void getExternalBucketAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String aggNameCity = "my_terms_city";//按城市聚合的名称
//定义terms聚合,指定字段为城市
TermsAggregationBuilder termsAggCity = AggregationBuilders.terms(aggNameCity).field("city");
String aggNameFullRoom = "my_terms_full_room";//按满房状态聚合的名称
//定义terms聚合,指定字段为满房状态
TermsAggregationBuilder termsArrFullRoom = AggregationBuilders.terms(aggNameCity).field("full_room");
String sumAggName = "my_sum";//sum聚合的名称
//定义sum聚合,指定字段为价格
SumAggregationBuilder sumAgg = AggregationBuilders.sum(sumAggName).field("price");
//定义聚合的父子关系
termsArrFullRoom.subAggregation(sumAgg);
termsAggCity.subAggregation(termsArrFullRoom);
searchSourceBuilder.aggregation(termsAggCity);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(aggNameCity);//获取sum聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {//遍历第一层bucket
String termsKeyCity = bucket.getKey().toString();//获取第一层bucket名称
System.out.println("--------" + "termsKeyCity=" + termsKeyCity + "--------");
Terms termsFullRom = bucket.getAggregations().get(aggNameCity);
for (Terms.Bucket bucketFullRoom : termsFullRom.getBuckets()) {//遍历第二层bucket
String termsKeyFullRoom = bucketFullRoom.getKeyAsString();//获取第二层bucket名称
System.out.println("termsKeyFullRoom=" + termsKeyFullRoom);
Sum sum = bucketFullRoom.getAggregations().get(sumAggName);//获取聚合指标
String key = sum.getName();//获取聚合指标名称
double sumVal = sum.getValue();//获取聚合指标值
System.out.println("key=" + key + ",count=" + sumVal);//打印结果
}
}
}
3、地理位置聚合
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"my_agg": {
"geo_distance": {
"field": "location",
"origin": {
"lat": 39.915143,
"lon": 116.4039
}
, "unit": "km",
"ranges": [
{
"to": 2
},
{
"from": 3,
"to": 10
},
{
"from": 10
}
]
},
"aggs": {
"my_min": {
"min": {
"field": "price",
"missing": 200
}
}
}
}
}
}
java客户端
public void geGeoDistanceAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String geoDistanceAggName = "location";//sum聚合的名称
//定义GeoDistance聚合
GeoDistanceAggregationBuilder geoDistanceAgg=AggregationBuilders.geoDistance(geoDistanceAggName,new GeoPoint(39.915143,116.4039));
geoDistanceAgg.unit(DistanceUnit.KILOMETERS);
geoDistanceAgg.field("location");
//指定分桶范围规则
geoDistanceAgg.addRange(new GeoDistanceAggregationBuilder.Range(null,0d,3d));
geoDistanceAgg.addRange(new GeoDistanceAggregationBuilder.Range(null,3d,110d));
geoDistanceAgg.addRange(new GeoDistanceAggregationBuilder.Range(null,110d,null));
String minAggName = "my_min";//min聚合的名称
//定义sum聚合,指定字段为价格
MinAggregationBuilder minAgg = AggregationBuilders.min(minAggName).field("price");
minAgg.missing(100);//指定默认值
//定义聚合的父子关系
geoDistanceAgg.subAggregation(minAgg);
searchSourceBuilder.aggregation(geoDistanceAgg);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
//执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
ParsedGeoDistance range = aggregations.get(geoDistanceAggName);//获取GeoDistance聚合返回的对象
for (Range.Bucket bucket : range.getBuckets()) {
String termsKey = bucket.getKeyAsString();//获取bucket名称的字符串形式
System.out.println("termsKey=" + termsKey);
ParsedMin min = bucket.getAggregations().get(minAggName);
String key = min.getName();//获取聚合名称
double minVal = min.getValue();//获取聚合值
System.out.println("key=" + key + ",min=" + minVal);//打印结果
}
}
三、聚合方式
1、先查询在聚合
GET /nandao_scenic/_search
{
"size": 0,
"query": {
"term": {
"city": {
"value": "河南"
}
}
},
"aggs": {
"my_agg": {
"avg": {
"field": "price"
}
}
}
}
java客户端
public void getQueryAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String avgAggName = "my_avg";//avg聚合的名称
//定义sum聚合,指定字段为价格
AvgAggregationBuilder avgAgg = AggregationBuilders.avg(avgAggName).field("price");
searchSourceBuilder.aggregation(avgAgg);//添加聚合
searchSourceBuilder.query(QueryBuilders.termQuery("city", "北京"));//构建query查询
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
SearchHits searchHits = searchResponse.getHits();//获取搜索结果集
System.out.println("---------------hit--------------");
for (SearchHit searchHit : searchHits) {//遍历搜索结果集
String index = searchHit.getIndex();//获取索引名称
String id = searchHit.getId();//获取文档_id
Float score = searchHit.getScore();//获取得分
String source = searchHit.getSourceAsString();//获取文档内容
System.out.println("index=" + index + ",id=" + id + ",source=" + source);//打印数据
}
System.out.println("---------------agg--------------");
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
ParsedAvg avg = aggregations.get(avgAggName);//获取sum聚合返回的对象
String avgName = avg.getName();//获取聚合名称
double avgVal = avg.getValue();//获取聚合值
System.out.println("avgName=" + avgName + ",avgVal=" + avgVal);//打印结果
}
2、前过滤器
GET /nandao_scenic/_search
{
"size": 0,
"query": {
"term": {
"city": {
"value": "河南"
}
}
},
"aggs": {
"my_agg": {
"filter": {
"term": {
"full": false
}
},
"aggs": {
"my_avg": {
"avg": {
"field": "price"
}
}
}
}
}
}
java客户端
public void getFilterAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String filterAggName = "my_terms";//sum聚合的名称
TermQueryBuilder termQueryBuilder=QueryBuilders.termQuery("full",true);
FilterAggregationBuilder filterAggregationBuilder=AggregationBuilders.filter(filterAggName,termQueryBuilder);
String avgAggName = "my_avg";//avg聚合的名称
//定义sum聚合,指定字段为价格
AvgAggregationBuilder avgAgg= AggregationBuilders.avg(avgAggName).field("price");
filterAggregationBuilder.subAggregation(avgAgg);//为filter聚合添加子聚合
searchSourceBuilder.aggregation(filterAggregationBuilder);//添加聚合
searchSourceBuilder.query(QueryBuilders.termQuery("city", "北京"));//构建term查询
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
ParsedFilter filter = aggregations.get(filterAggName);//获取sum聚合返回的对象
Avg avg =filter.getAggregations().get(avgAggName);
String key = avg.getName();//获取聚合名称
double avgVal = avg.getValue();//获取聚合值
System.out.println("key=" + key + ",avgVal=" + avgVal);//打印结果
}
3、后过滤器
GET /nandao_scenic/_search
{
"size": 0,
"query": {
"match": {
"title": "山"
}
},
"post_filter": {
"term": {
"city": "北京"
}
},
"aggs": {
"my_avg": {
"avg": {
"field": "price",
"missing": 100
}
}
}
}
java客户端
public void getPostFilterAggSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String avgAggName = "my_avg";//avg聚合的名称
//定义sum聚合,指定字段为价格
AvgAggregationBuilder avgAgg= AggregationBuilders.avg(avgAggName).field("price");
avgAgg.missing(200);//设置默认值为200
searchSourceBuilder.aggregation(avgAgg);//添加聚合
searchSourceBuilder.query(QueryBuilders.matchQuery("title", "假日"));//构建term查询
TermQueryBuilder termQueryBuilder=QueryBuilders.termQuery("city","北京");
searchSourceBuilder.postFilter(termQueryBuilder);
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Avg avg =aggregations.get(avgAggName);
String key = avg.getName();//获取聚合名称
double avgVal = avg.getValue();//获取聚合值
System.out.println("key=" + key + ",avgVal=" + avgVal);//打印结果
}
四、聚合排序
1、 按文档计数排序
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"group_city": {
"terms": {
"field": "city",
"order": {
"_count": "asc"
}
},
"aggs": {
"my_avg": {
"avg": {
"field": "price",
"missing": 100
}
}
}
}
}
}
java客户端
public void getAggDocCountOrderSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String termsAggName = "my_terms";//sum聚合的名称
//定义terms聚合,指定字段为城市
TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms(termsAggName).field("city");
BucketOrder bucketOrder=BucketOrder.count(true);
termsAggregationBuilder.order(bucketOrder);
String avgAggName = "my_avg";//avg聚合的名称
//定义sum聚合,指定字段为价格
SumAggregationBuilder avgAgg = AggregationBuilders.sum(avgAggName).field("price");
//定义聚合的父子关系
termsAggregationBuilder.subAggregation(avgAgg);
searchSourceBuilder.aggregation(termsAggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
SearchHits searchHits = searchResponse.getHits();//获取搜索结果集
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(termsAggName);//获取sum聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {
String bucketKey = bucket.getKey().toString();
System.out.println("termsKey=" + bucketKey);
Sum sum = bucket.getAggregations().get(avgAggName);
String key = sum.getName();//获取聚合名称
double sumVal = sum.getValue();//获取聚合值
System.out.println("key=" + key + ",count=" + sumVal);//打印结果
}
}
2、 按照聚合指标排序
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"group_city": {
"terms": {
"field": "city",
"order": {
"my_avg": "asc"
}
},
"aggs": {
"my_avg": {
"avg": {
"field": "price",
"missing": 200
}
}
}
}
}
}
java客户端
public void getAggMetricsOrderSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String termsAggName = "my_terms";//sum聚合的名称
//定义terms聚合,指定字段为城市
String avgAggName = "my_avg";//avg聚合的名称
TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms(termsAggName).field("city");
BucketOrder bucketOrder=BucketOrder.aggregation(avgAggName,true);
termsAggregationBuilder.order(bucketOrder);
//定义sum聚合,指定字段为价格
AvgAggregationBuilder avgAgg = AggregationBuilders.avg(avgAggName).field("price");
//定义聚合的父子关系
termsAggregationBuilder.subAggregation(avgAgg);
searchSourceBuilder.aggregation(termsAggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(termsAggName);//获取聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {
String bucketKey = bucket.getKey().toString();
System.out.println("termsKey=" + bucketKey);
Avg avg = bucket.getAggregations().get(avgAggName);
String key = avg.getName();//获取聚合名称
double avgVal = avg.getValue();//获取聚合值
System.out.println("key=" + key + ",avgVal=" + avgVal);//打印结果
}
}
3、 分组key排序
GET /nandao_scenic/_search
{
"size": 0,
"aggs": {
"group_city": {
"terms": {
"field": "city",
"order": {
"_key": "asc"
}
},
"aggs": {
"my_avg": {
"avg": {
"field": "price",
"missing": 200
}
}
}
}
}
}
java客户端
public void getAggKeyOrderSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String termsAggName = "my_terms";//sum聚合的名称
//定义terms聚合,指定字段为城市
String avgAggName = "my_avg";//avg聚合的名称
TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms(termsAggName).field("city");
BucketOrder bucketOrder=BucketOrder.key(true);
termsAggregationBuilder.order(bucketOrder);
//定义sum聚合,指定字段为价格
SumAggregationBuilder avgAgg = AggregationBuilders.sum(avgAggName).field("price");
//定义聚合的父子关系
termsAggregationBuilder.subAggregation(avgAgg);
searchSourceBuilder.aggregation(termsAggregationBuilder);//添加聚合
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
SearchHits searchHits = searchResponse.getHits();//获取搜索结果集
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(termsAggName);//获取sum聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {
String bucketKey = bucket.getKey().toString();
System.out.println("termsKey=" + bucketKey);
Sum sum = bucket.getAggregations().get(avgAggName);
String key = sum.getName();//获取聚合名称
double sumVal = sum.getValue();//获取聚合值
System.out.println("key=" + key + ",count=" + sumVal);//打印结果
}
}
五、聚合分页
1、Top hits 聚合分页
GET /nandao_scenic/_search
{
"size": 0,
"query": {
"match": {
"title": "山"
}
},
"aggs": {
"group_city": {
"terms": {
"field": "city"
},
"aggs": {
"my_avg": {
"top_hits": {
"size": 10
}
}
}
}
}
}
java客户端
public void getAggTopHitsSearch() throws IOException {
SearchRequest searchRequest = new SearchRequest("nandao_scenic");//创建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
String termsAggName = "my_terms";//sum聚合的名称
TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms(termsAggName).field("city");
BucketOrder bucketOrder=BucketOrder.key(true);
termsAggregationBuilder.order(bucketOrder);
String topHitsAggName = "my_top";//avg聚合的名称
TopHitsAggregationBuilder topHitsAgg=AggregationBuilders.topHits(topHitsAggName);
topHitsAgg.size(3);
//定义聚合的父子关系
termsAggregationBuilder.subAggregation(topHitsAgg);
searchSourceBuilder.aggregation(termsAggregationBuilder);//添加聚合
searchSourceBuilder.query(QueryBuilders.matchQuery("title","金都"));
searchRequest.source(searchSourceBuilder);//设置查询请求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
Aggregations aggregations = searchResponse.getAggregations();//获取聚合结果
Terms terms = aggregations.get(termsAggName);//获取sum聚合返回的对象
for (Terms.Bucket bucket : terms.getBuckets()) {
String bucketKey = bucket.getKey().toString();
System.out.println("termsKey=" + bucketKey);
TopHits topHits = bucket.getAggregations().get(topHitsAggName);
SearchHit[] searchHits=topHits.getHits().getHits();
for(SearchHit searchHit:searchHits){
System.out.println(searchHit.getSourceAsString());
}
}
}
此种分页影响性能,优化方向可以一次性存到redis,然后再redis里面做分页缓存
stringRedisTemplate.opsForList().range(key,0, 10);
2、Collapse 聚合分页
GET /nandao_scenic/_search
{
"from": 0,
"size": 5,
"query": {
"match": {
"title": "山"
}
},
"collapse": {
"field": "city"
}
}
java客户端
public void getCollapseAggSearch() throws IOException{
//按照spu进行分组
CollapseBuilder collapseBuilder = new CollapseBuilder("city");//按照城市进行分组
SearchRequest searchRequest = new SearchRequest();//新建搜索请求
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchQuery("title", "金都"));//新建match查询
searchSourceBuilder.collapse(collapseBuilder);//设置折叠
searchRequest.source(searchSourceBuilder);//设置查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);//执行搜索
SearchHits searchHits = searchResponse.getHits();//获取搜索结果集
for (SearchHit searchHit : searchHits) {//遍历搜索结果集
String index = searchHit.getIndex();//获取索引名称
String id = searchHit.getId();//获取文档_id
Float score = searchHit.getScore();//获取得分
String source = searchHit.getSourceAsString();//获取文档内容
System.out.println("index=" + index + ",id=" + id + ",score=" + score + ",source=" + source);//打印数据
}
}
到此,聚合相关的查询分享完毕,大家一定要结合项目多多实战练习,定会早日掌握,下篇我们分析文本搜索相关的内容,敬请期待。
443

被折叠的 条评论
为什么被折叠?



