数据结构5

算法的时间复杂度

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

忽略常数项

在这里插入图片描述

在这里插入图片描述
结论:
2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略
3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略

忽略低次项

在这里插入图片描述
在这里插入图片描述
结论:
2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20

忽略系数

在这里插入图片描述
在这里插入图片描述
结论:
随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键

算法的时间复杂度

一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。

T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。
计算时间复杂度的方法:

用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
类似于高数中的极限

常见的时间复杂度

1.常数阶O(1)
2.对数阶O(log2n)
3.线性阶O(n)
4.线性对数阶O(nlog2n)
5.平方阶O(n^2)
6.立方阶O(n^3)
7.k次方阶O(n^k)
8.指数阶O(2^n)
在这里插入图片描述
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
从图中可见,我们应该尽可能避免使用指数阶的算法

各种阶数算法

1.常数阶
只要没有循环,不管多少行时间复杂度都是1
2.对数阶
例如:

int i=1;
while(i<n){
	i*=2;
}

此while循环里的语句被循环了log2n次,所以时间复杂度为log2n
若语句为i*=3 则时间复杂度为log3n
3.线性阶

for (int i=1;i<=n;i++){
	j=i;
	j++;
}

此for循环里面的语句被执行了n次,所以时间复杂度为n
4.线性对数阶

for(m=1;m<n;m++){
	i=1;
	while(i<n){
		i*=2;
	}
}

此复合循环被执行了n*log2n次
5.平方阶

for(int i=1;i<=n;i++){
	for(int j=1;j<=n;j++){
		x=j;
		x++;
	}
}

此嵌套循环为n*n次

排序算法

8种排序算法的时间复杂度

在这里插入图片描述

冒泡排序及优化

	public static void bubbleSort(int[] arr) {
		int temp = 0;
		for (int i = 0; i < arr.length - 1; i++) {

			for (int j = 0; j < arr.length - 1 - i; j++) {
				// 如果前面的数比后面的数大,则交换
				if (arr[j] > arr[j + 1]) {
					temp = arr[j];
					arr[j] = arr[j + 1];
					arr[j + 1] = temp;
				}
			}
		}
	}

时间复杂度为n*(n-1)/2

	public static void bubbleSort(int[] arr) {
		int temp = 0; // 临时变量
		boolean flag = false; // 标识变量,表示是否进行过交换
		for (int i = 0; i < arr.length - 1; i++) {

			for (int j = 0; j < arr.length - 1 - i; j++) {
				if (arr[j] > arr[j + 1]) {
					flag = true;
					temp = arr[j];
					arr[j] = arr[j + 1];
					arr[j + 1] = temp;
				}
			}
			if (!flag) { // 在一趟排序中,一次交换都没有发生过
				break;
			} else {
				flag = false; // 重置flag, 进行下次判断
			}
		}
	}

由于进行过判断flag,时间复杂度小于前者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值