Graphiler系列(一):略读概述,掌握核心大意

Graphiler是一个针对图神经网络(GNNs)的编译器栈,旨在解决灵活性与高性能之间的矛盾。它引入MP-DFG(消息传递数据流图)作为新抽象,以提高表达力并优化计算效率。通过减少冗余计算和内存使用,Graphiler能将UDF基的GNN加速两个数量级,接近专家实现的性能。
摘要由CSDN通过智能技术生成

Graphiler系列(一):略读概述,掌握核心大意

1、分析题目:

  • 目的:优化图神经网络

  • 方法:消息传递数据流图MP-DFG

2、机构:【上海科技大学】 会议:【MLSys】

3、相关参考资料

消息传递资料:

Graphiler资料:

4、概述

  • 解决问题: 图神经网络的灵活性(易于编程)和高性能是矛盾的。

  • 问题描述: 目前的GNN框架基于消息传递范式。使用内置原语和用户自定义函数UDF来简洁地表达GNN模型。内置原语提供高性能,但表现力有限;UDF具有灵活性,但性能低且占用过多内存。

  • 解决方法: Graphiler —— 用于GNNs的编译器栈,提供UDF编程接口灵活性的同时实现了高性能。

  • 方法核心: MP-DFG(消息传递数据流图,一种新抽象)

    • 作用:

      • 实现大幅减少计算冗余和内存占用的优化

      • 在统一的框架下优化同构和异构GNN

    • 实验结果:可以将UDF GNNs加速至两个数量级。获得接近于专家实现性能。节省大量内存。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值