Graphiler系列(一):略读概述,掌握核心大意
1、分析题目:
-
目的:优化图神经网络
-
方法:消息传递数据流图MP-DFG
2、机构:【上海科技大学】 会议:【MLSys】
3、相关参考资料
消息传递资料:
-
消息传递图神经网络(Message Passing Neural Networks,MPNN) | 冬于的博客 (ifwind.github.io)
-
(77条消息) [Scene Graph] 图神经网络的核心方法——Message Passing_风中摇曳的小萝卜的博客-CSDN博客
Graphiler资料:
4、概述
-
解决问题: 图神经网络的灵活性(易于编程)和高性能是矛盾的。
-
问题描述: 目前的GNN框架基于消息传递范式。使用内置原语和用户自定义函数UDF来简洁地表达GNN模型。内置原语提供高性能,但表现力有限;UDF具有灵活性,但性能低且占用过多内存。
-
解决方法: Graphiler —— 用于GNNs的编译器栈,提供UDF编程接口灵活性的同时实现了高性能。
-
方法核心: MP-DFG(消息传递数据流图,一种新抽象)
-
作用:
-
实现大幅减少计算冗余和内存占用的优化
-
在统一的框架下优化同构和异构GNN
-
-
实验结果:可以将UDF GNNs加速至两个数量级。获得接近于专家实现性能。节省大量内存。
-