杨辉三角案例的C/C++与Python实现

本文介绍了杨辉三角的起源、特性和在组合数学中的重要性,包括其与二项式系数的关系。同时,提供了C/C++与Python两种编程语言实现杨辉三角的案例,详细解析了代码实现过程。文章还对杨辉三角的某些特殊性质进行了深入探讨,如与斐波那契数列的联系以及与11的幂的数字和规律。
摘要由CSDN通过智能技术生成

目录

一、杨辉三角

1.1 简介

1.2 特性

二、案例实现

2.1 C/C++算法实现

2.2 python实现

三、重点分析


一、杨辉三角

    这里简单介绍一下,具体的在百度百科上都能找到。

1.1 简介

    杨辉三角,是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。在欧洲,帕斯卡(1623----1662)在1654年发现这一规律,所以这个表又叫做帕斯卡三角形。帕斯卡的发现比杨辉要迟393年,比贾宪迟600年。

1.2 特性

前提:每行端点与结尾的数为1.

  1. 每个数等于它上方两数之和。

  2. 每行数字左右对称,由1开始逐渐变大。

  3. 第n行的数字有n项。

  4. 前n行共[(1+n)n]/2 个数。

  5. 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

  6. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

  7. 每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)

  8. (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

  9. 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

  10. 将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=14641,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=161051。

  11. 第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。

  12. 斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。

  13. 将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。

二、案例实现

2.1 C/C++算法实现

在这里使用的是堆栈空间存储方法实现,最后结果打印出想要的前n行所有的数据。其实网上也有很多实现方法,有的内存、时间消耗可能比我的更小。在这里我只是个引子,附上代码:

#include <string>
#include <stdio.h>
#include <stdlib.h>

#define n 20

void fun(int **arr,int num)
{
	int i = 0,j = 0;

	if (arr == NULL)
	{
		return ;
	}
	arr[0][0] = 1;
	arr[1][0] = 1;
	arr[1][1] = 1;
	for(i = 2;i < num;i++)		
	{
		arr[i][0] = 1;
		for (j = 1;j < i;j++)
		{
			arr[i][j] = arr[i-1][j-1]+arr[i-1][j];
		}
		arr[i][i] = 1;
		
	}

	return ;
}

int main()
{
	int i,j = 0;
	int **array = new int *[n];
	
	for (j = 0;j < n;j++)
	{
		array[j] = new int[j+1];
		
		memset(array[j],0,sizeof(int)*(j+1));
	}
	fun(array,n);
	
	for(i = 0;i < n;i++)		
	{
		for (j = 0;j < (n-i);j++)
		{
			printf(" ");
		}
		for (j = 0;j < i+1;j++)
		{
			printf("%d ",array[i][j]);
		}
		printf("\n");
	}
		

	for(i = 0;i < n;i++)
	{
		if (array[i] != NULL)
		{
			delete []array[i];
			array[i] = NULL;
		}
	}
	delete []array;
	array = NULL;
	system("pause");
	return 0;
}

执行结果:

前20行的杨辉三角数据

2.2 python实现

def yh_tri(mylist1,mylist2,n):
    l = len(mylist1)
    if n < 2:
        return
    if l < 2:
        return
    if l >= n:
        print("the list len >= %d ",n)
        return
    for i in range(l,n):
        mylist2.append(1)
        for j in range(i-1):
            a = mylist1[i-1][j]
            b = mylist1[i-1][j+1]
            c = a + b
            mylist2.append(c)
        mylist2.append(1)   
        mylist1.insert(len(mylist1),mylist2[:])
        mylist2.clear()

函数调用:

mylist1 = [[1],[1,1]]
mylist2 = []
n = 10 #可根据需求改变
yh_tri(mylist1,mylist2,n)
for i in range(n):
    print(" "*(2*n-2*i-2),mylist1[i])

最后执行结果:

In [1]:runfile('D:/my_workspace/Python/yh_tri.py', wdir='D:/my_workspace/Python')
                   [1]
                 [1, 1]
               [1, 2, 1]
             [1, 3, 3, 1]
           [1, 4, 6, 4, 1]
         [1, 5, 10, 10, 5, 1]
       [1, 6, 15, 20, 15, 6, 1]
     [1, 7, 21, 35, 35, 21, 7, 1]
   [1, 8, 28, 56, 70, 56, 28, 8, 1]
 [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

三、重点分析

1、杨辉三角特性分析,需要明确其中的规律:即下一层的数首尾均为1,且其他数是由上层左右肩部数据之和得到的。对应特性3,特性7。

2、在c/c++实现中,需要二维内存循环开辟,并注意结束后的内存释放。

3、python实现过程中,嵌套列表中元素循环添加问题,注意列表之间赋值后,不要随着列表更改而改变大列表的元素(后续会详细分析讲到)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nanke_yh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值