问题:已知一个集合,求该集合的所有子集。
这主要是个思想,在很多的题目中都会有它的变形,最近写一道题时想起来的
子集数目:2的n次方
思路:我们可以先用一个空集,对集合的第一个元素加入或不加入,然后得到两个集合,然后接着对下一个元素讨论加入或不加入,依次推理,可以得到2的n 次方个子集,
import java.util.*;
public class 子集问题 {
public static void main(String[] args) {
int arr[]= {1,2,3};
System.out.println(show(arr,arr.length));
}
public static Set<Set<Integer>> show(int []A,int n){
Set<Set<Integer>> res = new HashSet<>();
res.add(new HashSet<>());//初始化为空集
//从第一个元素开始处理
for(int i=0;i<n;i++) {
Set<Set<Integer>> res_new=new HashSet();//新建一个大集合
res_new.addAll(res);//把原来集合中的每个集合都加入到 新集合
//遍历之前的集合,对于当前元素可以加进去,或不加进去
for(Set e:
res) {
Set clone=(Set)((HashSet)e).clone();
clone.add(A[i]);//把当前元素加进去
res_new.add(clone);//把克隆的子集加到大集合
}
res=res_new;
}
return res;
}
}
感觉还是理解的不是特别好,,,有待加强