win10 MX150显卡 教你尝试安装Tensorflow-gpu

本文详细介绍了如何在NVIDIA显卡环境下正确安装CUDA和TensorFlow-GPU,包括驱动程序版本确认、CUDA和cuDNN安装、环境变量设置、Python虚拟环境创建及TensorFlow-GPU版本匹配调试,确保GPU加速的深度学习框架正常运行。
摘要由CSDN通过智能技术生成
  1. 进入NVIDIA显卡控制面板,查看显卡驱动程序,确定电脑能支持的CUDA的最高版本(记为n)
  2. 安装microsoft visual c++ 2012, 2013,2017这些不大,尽量都装上吧
  3. 安装版本为n的CUDA及与CUDA匹配的cuDNN(CUDA该打的补丁全都装上,cuDNN文件夹该复制的都复制过去,还有个extra文件夹,把里面的*.dll和*.lib文件也都复制过去。)
  4. 环境变量该设置的都设置全了。
  5. 安装包管理软件(例如Anaconda)使用python3.6创建至少一个虚拟环境,最好创建两个虚拟环境
  6. 在创建的虚拟环境中使用pip安装tensorflow-gpu,版本从高到低试验吧。例如虚拟环境1中安装tensorflow-gpu 2.0.0a0,那么同时在虚拟环境2中安装tensorflow-gpu 1.13.1。安装好之后就试验简单的代码示例 “import tensorflow as tf” "hello = tf.constant('Hello,Tensorflow!')",后面的代码自己搜。只要出现报错 “DLL load failed: 找不到指定的模块“,那就证明该版本tensorflow-gpu与该版本CUDA不匹配。因为我们不知道DLL到底指的是哪个dll,所以环境1试完再试环境2,如果两个都报错,那么就降tensorflow的版本,一直试下去。如果一直降版本不行,那就执行步骤7
  7. 降CUDA的版本,例如安装n-1版本,再把步骤3和步骤6试一遍。如果没有报错,就证明tensorflow-gpu初步安装成功了!
  8.  
  9. 说一下我自己的情况:我的显卡控制面板里面,点击左下角”系统信息“,在出现的页面可以看到第一行是”驱动程序版本“,选择‘组件’选项卡,可以找到一个NVCUDA.DLL,可以看到的信息是诸如”NVIDIA CUDA 9.2.153 driver,那么我理解的是支持CUDA的最高版本是9.2.153)。我装了UDA 9.2.148,执行了上面的1~6步,总是报错 “DLL load failed: 找不到指定的模块“。所以,我在没有卸载CUDA 9.2.148的情况下又装了CUDA 9.0. !! 这个时候,在cmd中输入nvcc -V时,显示的是CUDA 9.0 
  10. 为了交替试验CUDA 9.0 应该匹配tensorflow-gpu的哪个版本,我用conda建立了一个虚拟环境(一个是base(Anaconda自建),一个是tensorflow(python36)我自己的)在base环境中pip安装了tensorflow-gpu==1.10.0,在自建环境tensorflow(python36)中pip安装了tensorflow-gpu==1.11.0,这些都连接的是阿里云镜像站。
  11. 很幸运,环境1中的tensorflow-gpu安装成功!环境2中的tensorflow-gpu也安装成功。所以,我没有再继续升tensorflow的版本。卸载了base环境中的tensorflow-gpu,只保留了自建环境中的tensorflow-gpu。
  12. 补充说明:NVIDIA显卡控制面板,点击“系统信息”后,出现的页面有两个选项卡“显示”和“组件”,“显示”下可查“驱动程序版本”,“组件”下可查“NVCUDA.DLL的版本信息”,这两者是相互关联的。当你更新完驱动程序后,这两个版本会同步变动。我安装成功tensorflow-gpu后,在设备管理器中更新了显卡的驱动程序,再去看“NVCUDA.DLL的版本信息时,发现已经变成了“NVIDIA CUDA 10.0.132 driver”
  13. 不要追求高版本!陈最良!版本降低一些,成功率更高
### 安装适用于Ubuntu 20.04和MX150显卡的驱动 对于Ubuntu 20.04以及配备有MX150显卡的设备来说,可以通过多种方式来安装合适的NVIDIA驱动。一种简便的方法是利用`ubuntu-drivers`工具自动检测并安装推荐的驱动版本: ```bash sudo ubuntu-drivers autoinstall ``` 这种方法能够简化安装过程,并确保所选驱动与系统的兼容性[^1]。 另一种方法涉及通过图形界面完成操作。可以进入“软件和更新”的“附加驱动”选项卡中寻找适用的驱动器,比如可以选择名为`nvidia-driver-535`这样的特定版本。如果初次访问该页面时未能发现任何可用项,则建议先运行如下命令刷新包列表后再尝试查看是否有新的选择出现: ```bash sudo apt-get update ``` 这有助于解决某些情况下无法立即看到最新或适当驱动的问题[^2]。 当然也存在手动下载并安装指定版本驱动的方式,不过这种方式相对复杂一些。例如,假设已经获取到了对应平台架构下的`.run`文件形式发布的驱动程序(如`NVIDIA-Linux-x86_64-430.26.run`),则需先进入存放此文件所在的目录,接着给予其执行权限并通过命令行启动安装流程: ```bash cd /path/to/directory-containing-the-run-file sudo chmod 777 NVIDIA-Linux-x86_64-430.26.run sudo ./NVIDIA-Linux-x86_64-430.26.run --no-opengl-files ``` 值得注意的是,上述步骤中的具体路径应替换为实际保存位置;而采用此种方式进行安装前还需确认已停止相关服务以免冲突发生[^3]。 还有一种更为直接的选择就是直接使用apt包管理器安装预编译好的二进制驱动包。针对想要安装`nvidia-440`的情况而言,只需执行单条指令即可实现目标: ```bash sudo apt install nvidia-driver-440 ``` 这种途径不仅简单快捷而且易于维护升级[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值