- 博客(10)
- 收藏
- 关注
原创 交叉熵损失(Cross Entropy Loss)计算过程
(89条消息) 交叉熵损失(Cross Entropy Loss)计算过程_交叉熵损失计算_手撕机的博客-CSDN博客为什么使用交叉熵而不是MSE计算损失:Why You Should Use Cross-Entropy Error Instead Of Classification Error Or Mean Squared Error For Neural Network Classifier Training | James D. McCaffrey (wordpress.com)
2023-07-19 11:55:17 89
原创 卷积神经网络之“浅层特征”与“深层特征”
由于层次结构和过滤器大小的不同,CNN 可以捕捉高级、中级甚至低级的特征。还可以通过池化机制将信息压缩成一个较小的尺寸。CNN 模型优势:可以捕捉特征不用考虑位置。是处理图像数据,特别是"特征提取"的理想类型。
2022-10-12 11:11:29 1257
原创 评价模型的方法Matthews correlation coefficient (MCC)
评价模型的方法Matthews correlation coefficient (MCC)
2022-10-09 10:34:14 200
原创 pytorch 中tensor在CPU和GPU之间转换,以及numpy之间的转换
pytorch 中tensor在CPU和GPU之间转换,以及numpy之间的转换
2022-09-30 09:33:23 622
原创 RGB颜色表示方法,red = (rgb & 0x00ff0000) >> 16是什么意思?
python代码red = (rgb & 0x00ff0000) >> 16
2022-09-13 15:48:39 176
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人