那啥,,矩阵乘法,矩阵快速幂模板

这个是乘法加剪枝的。

Mat operator * (Mat a, Mat b) {
    Mat c;
    memset(c.mat, 0, sizeof(c.mat));
    int i, j, k;
    for(k = 0; k < n; ++k) {
        for(i = 0; i < n; ++i) {
            if(a.mat[i][k] <= 0)  continue;   //不要小看这里的剪枝,cpu运算乘法的效率并不是想像的那么理想(加法的运算效率高于乘法,比如Strassen矩阵乘法)
            for(j = 0; j < n; ++j) {
                if(b.mat[k][j] <= 0)    continue;    //剪枝
                c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
            }
        }
    }
    return c;
}

******************************

这个是自己刚刚改的剪枝,,,,快了30ms,,,

赶脚差不多啦。可能自己写的用得顺手。

用的时候记得改“16”。

struct node mul(node x,node y)
{
    int i,j,k;
    node z;
    memset(z.a,0,sizeof(z.a));
    for(i=0;i<16;i++)
    {
        for(j=0;j<16;j++)
        {
            for(k=0;k<16;k++)
                if(!x.a[i][k]||!y.a[k][j]) continue;
                else z.a[i][j]+=x.a[i][k]*y.a[k][j]%m;
            z.a[i][j]%=m;
        }
    }
    return z;
}


然后这个是连乘的。

Mat operator ^ (Mat a, int k) {
    Mat c;
    int i, j;
    for(i = 0; i < n; ++i)
        for(j = 0; j < n; ++j)
            c.mat[i][j] = (i == j);    //初始化为单位矩阵

    for(; k; k >>= 1) {
        if(k&1) c = c*a;

        a = a*a;
    }
    return c;
}

***************************

警觉没有快速幂的模板(自己用过的),赶紧来一发。


#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream> 
using namespace std;

int N;

struct matrix
{
       int a[3][3];
}origin,res;


matrix multiply(matrix x,matrix y)
{
       matrix temp;
       memset(temp.a,0,sizeof(temp.a));
       for(int i=0;i<3;i++)
       {
               for(int j=0;j<3;j++)
               {
                       for(int k=0;k<3;k++)
                       {
                               temp.a[i][j]+=x.a[i][k]*y.a[k][j];
                       }
               }
       }
       return temp;
}

void init()
{
     printf("随机数组如下:\n");
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
             {
                     origin.a[i][j]=rand()%10;
                     printf("%8d",origin.a[i][j]);
             }
             printf("\n");
     }
     printf("\n");
     memset(res.a,0,sizeof(res.a));
     res.a[0][0]=res.a[1][1]=res.a[2][2]=1;                  //将res.a初始化为单位矩阵 
}

void calc(int n)
{
     while(n)
     {
             if(n&1)
                    res=multiply(res,origin);
             n>>=1;
             origin=multiply(origin,origin);
     }
     printf("%d次幂结果如下:\n",n);
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
                     printf("%8d",res.a[i][j]);
             printf("\n");
     }
     printf("\n");
}
int main()
{
    while(cin>>N)
    {
            init();
            calc(N);
    }
    return 0;
}

嗯,,,其实快速幂的精髓就是这个,然后我不会运算符重载= =,所以这里每次的乘法要用函数代替啦,其他一样一样。

while(N)
 {
                if(N&1)
                       res=res*A;
                n>>=1;
                A=A*A;
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值