翻转硬币问题

一摞硬币共有n枚,全部正面朝上。第1次翻转第一个硬币,第2次最上面的2枚硬币,将整体拿出来,倒扣回去,第3次最上面的3枚硬币,将整体拿出来,倒扣回去,(如图所示)……直至n枚,然后再从一枚开始,重复刚才的做法。循环直到这摞硬币又都是正面朝上为止。例如,n为1时,翻两次即可.n为2时,翻3次即可;n为3时,翻9次即可;n为4时,翻11次即可;n为5时,翻24次即可……

问:翻转次数与n的关系

1 1 1 表示硬币向上 − 1 -1 1 表示硬币向下,设一共 n n n 枚硬币, n > = 1 n>=1 n>=1

现考虑从上至下第 t t t枚硬币,设翻转次数为 s s s

由带余除法,令 s = n j + i s=nj+i s=nj+i ( j > = 0 j>=0 j>=0 0 < = i < n 0<=i<n 0<=i<n )

由于每翻转一次,翻转位置上面的(包括该翻转位置)硬币被翻面,所以不难证明 s s s 次翻转后

t t t 枚硬币的翻转状态 S ( s , n , t ) = S(s,n,t) = S(s,n,t)=

( − 1 ) ( n − t + 1 ) j + ( i − t + 1 ) = ( − 1 ) n j + i + ( 1 − t ) ( j + 1 ) = ( − 1 ) s + ( t − 1 ) ( j + 1 ) (-1)^{(n-t+1)j+(i-t+1)}=(-1)^{nj+i+(1-t)(j+1)}=(-1)^{s+(t-1)(j+1)} (1)(nt+1)j+(it+1)=(1)nj+i+(1t)(j+1)=(1)s+(t1)(j+1)

i > = t i>=t i>=t

( − 1 ) ( n − t + 1 ) j (-1)^{(n-t+1)j} (1)(nt+1)j i < t i<t i<t

问题转变为求对于任意 1 < = t < = n 1<=t<=n 1<=t<=n 使得 S ( s , n , t ) = 1 S(s,n,t)=1 S(s,n,t)=1 的最小正整数 s m i n s_{min} smin

为此只需考察 − 1 -1 1 指数部分的奇偶性

事实上简单分析 S ( s , n , t ) S(s,n,t) S(s,n,t) 的表达式可发现满足对于任意 1 < = t < = n 1<=t<=n 1<=t<=n S ( s , n , t ) = 1 S(s,n,t)=1 S(s,n,t)=1

n , s n,s n,s 必须满足

[ s n ] \left[ \frac{s}{n} \right] [ns] 为偶数且 n ∣ s n|s ns

显然对固定的 n n n 满足以上条件的 s = 2 k n s=2kn s=2kn ( k > = 1 k>=1 k>=1 )

s m i n = 2 n s_{min} =2n smin=2n

即对于 n n n 枚硬币从全部正面朝上开始按题主翻转规则翻转使其再次正面朝上的最小翻转次数是 2 n 2n 2n

附详细分析

对固定的 n ( n > = 2 ) n( n>=2 ) n(n>=2) 要使对于任意 1 < = t < = n 1<=t<=n 1<=t<=n S ( s , n , t ) = 1 S(s,n,t)=1 S(s,n,t)=1

s s s 的详细求法分析如下

j j j 为奇数时若 n ∣ s n|s ns i = 0 i=0 i=0 ,从而 t t t 1 1 1 n n n 变化时由于 j j j 为奇数, ( n − t + 1 ) j (n-t+1)j (nt+1)j 会在奇数偶数之间来回变化,不符合要求

n n n 不整除 s s s ,由于 j + 1 j+1 j+1 为偶数,当 t t t 1 1 1 i i i 变化时 s + ( t − 1 ) ( j + 1 ) s+(t-1)(j+1) s+(t1)(j+1) 的奇偶性和 s s s 相同,

从而 s s s 必须为偶数,而此时若 i i i 不等于 n − 1 n-1 n1 由于 j j j 为奇数当 t t t i + 1 i+1 i+1 n n n 变化时 ( n − t + 1 ) j (n-t+1)j (nt+1)j 会在奇数偶数之间来回变化,不符合要求

i = n − 1 i=n-1 i=n1 t = n t=n t=n 时由于 j j j 是奇数有 ( n − t + 1 ) j (n-t+1)j (nt+1)j 为奇数同样不符合要求

j j j 为偶数时若 n ∣ s n|s ns ,则当 t t t 1 1 1 变动到 n n n 时,由于 j j j 为偶数故 ( n − t + 1 ) j (n-t+1)j (nt+1)j 为偶数符合要求

n n n s s s 的余数 i i i 大于等于 2 2 2 时,由于 j + 1 j+1 j+1 为奇数当 t t t 1 1 1 变动到 i i i s + ( t − 1 ) ( j + 1 ) s+(t-1)(j+1) s+(t1)(j+1)

会在奇数和偶数间来回变化不符合要求

i = 1 i=1 i=1 时, t t t 1 1 1 s + ( t − 1 ) ( j + 1 ) = s s+(t-1)(j+1) = s s+(t1)(j+1)=s ,从而 s s s 必须为偶数这样符合要求

综上,只有满足 j j j 为偶数, n ∣ s n|s ns j j j 为偶数, i = 1 i=1 i=1 , s s s 为偶数的 n , s n,s n,s 符合要求

j j j 为偶数, i = 1 i=1 i=1 s s s 显然为奇数这和 s s s 为偶数的要求矛盾,故不可能

所以当且仅当对固定的 n n n n ∣ s n|s ns j j j为偶数的 n , s n,s n,s 符合要求即

[ s n ] \left[ \frac{s}{n} \right] [ns] 为偶数且 n ∣ s n|s ns

也就是对固定的 n n n 对于任意 1 < = t < = n 1<=t<=n 1<=t<=n S ( s , n , t ) = 1 S(s,n,t)=1 S(s,n,t)=1

s s s 必须满足

[ s n ] \left[ \frac{s}{n} \right] [ns] 为偶数且 n ∣ s n|s ns 这样就完成了对 s s s 的推导

如果每次对前i个硬币翻转,再逆置,问题的难度会变得很大

如果用 F s ( t ) F_s(t) Fs(t) 表示从上到下第 t t t 个位置在第 s s s 次翻转后其上硬币的翻转状态

显然有 F 0 ( t ) = 1 F_0(t)=1 F0(t)=1

F s ( t ) = − F s − 1 ( i + 1 − t ) t < = i F_s(t)=-F_{s-1}(i+1-t) t<=i Fs(t)=Fs1(i+1t)t<=i

= F s − 1 ( t ) t > i =F_{s-1}(t) t>i =Fs1(t)t>i

其中 i i i s − 1 s-1 s1 除以 n n n 的余数加 1 1 1

如果能求出 F s ( t ) F_s(t) Fs(t) 的数学表达式,直接根据该表达式讨论满足 F s ( t ) = 1 F_s(t)=1 Fs(t)=1 的最小正整数 s s s 即可

但这个递推式如何求解,我没有头绪望高手解答

  • 14
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值