menage数的介绍参见组合数学引论(第二版)许胤龙 孙淑玲 著 中国科学技术大学出版社
现在要做的是推广menage数的概念
先陈述一个熟知的结论
定理一:
M = 1 , 2 , − − − , n M={ 1,2,---,n } M=1,2,−−−,n中满足 a i + 1 − a i > = s ( s > = 1 i = 1 , 2 , − − − , r − 1 ) a_{i+1}-a_{i}>=s ( s>=1 i = 1,2,---,r-1 ) ai+1−ai>=s(s>=1i=1,2,−−−,r−1)的 r 组合 ( a 1 , a 2 , − − − , a r ) ( a_1,a_2,---,a_r ) (a1,a2,−−−,ar)的数目是 C r n − ( r − 1 ) ( s − 1 ) C_{r}^{n-(r-1)(s-1)} Crn−(r−1)(s−1)
证明见开头提及的教材
对于序列
1 , 2 , 3 − − − n − 1 , n 1,2,3---n-1,n 1,2,3−−−n−1,n
2 , 3 , 4 , − − − , n , 1 2,3,4,---,n,1 2,3,4,−−−,n,1
m , m + 1 , m + 2 , − − − , m − 2 , m − 1 m,m+1,m+2,---,m-2,m-1 m,m+1,m+2,−−−,m−2,m−1
a 1 , a 2 , − − − , a n ( n > = 2 a_1,a_2,---,a_n ( n>=2 a1,a2,−−−,an(n>=2 2 < = m < = n − 1 ) 2<=m<=n-1 ) 2<=m<=n−1)
若 a 1 , a 2 , − − − , a n a_1,a_2,---,a_n a1,a2,−−−,an 是{ 1 , 2 , − − − , n 1,2,---,n 1,2,−−−,n }的全排列且 a i ( 1 < = i < = n ) a_i ( 1<=i<=n ) ai(1<=i<=n)和上述序列第 i i i 列前 m − 1 m-1 m−1 行任意数都不同,则称 a 1 , a 2 , − − − , a n a_1,a_2,---,a_n a1,a2,−−−,an 是一个 m m m 重错排,而 m m m 重错排的总数称为广义menage数 U ( n , m ) U(n,m) U(n,m)
下面计算 U ( n , m ) U(n,m) U(n,m)
定义性质 P i P_i Pi
a i = i a_i= i ai=i 或 i + 1 i+1 i+1 —或 i + m − 11 < = i < = n − 1 i+m-1 1<=i<=n-1 i+m−11<=i<=n−1
a i = n a_i = n ai=n 或 1 1 1 或 $2 —或 m − 1 m-1 m−1 i = n i=n i=n
设集合 A i A_i Ai ( 1 < = i < = n 1<=i<=n 1<=i<=n )是所有满足性质 P i P_i Pi 的全排列构成的集合
则由容斥原理
U ( n , m ) = ∣ A 1 ˉ ∩ A 2 ˉ ∩ − − − ∩ A n ˉ ∣ = ∣ S ∣ + ∑ k = 1 n ( − 1 ) k ∑ 1 < = i 1 < i 2 < − − − < i k < = n ∣ A i 1 ˉ ∩ A i 2 ˉ ∩ − − − ∩ A i k ˉ ∣ U(n,m)=|\bar{A_1}\cap \bar{A_2} \cap ---\cap \bar{A_n}| = |S|+\sum_{k=1}^{n}{(-1)^k\sum_{1<=i_1<i_2<---<i_k<=n}{|\bar{A_{i_1}}\cap \bar{A_{i_2}}\cap ---\cap\bar{A_{i_k}}|}} U(n,m)=∣A1ˉ∩A2ˉ∩−−−∩Anˉ∣=∣S∣+∑k=1n(−1)k∑1<=i1<i2<−−−<ik<=n∣Ai1ˉ∩Ai2ˉ∩−−−∩Aikˉ∣
其中 S S S 是{ 1 , 2 , − − − , n 1,2,---,n 1,2,−−−,n }的所有全排列构成的集合 ∣ S ∣ = n ! |S|=n! ∣S∣=n!
现在来计算 ∑ 1 < = i 1 < i 2 < − − − < i k < = n ∣ A i 1 ˉ ∩ A i 2 ˉ ∩ − − − ∩ A i k ˉ ∣ \sum_{1<=i_1<i_2<---<i_k<=n}{|\bar{A_{i_1}}\cap \bar{A_{i_2}}\cap ---\cap\bar{A_{i_k}}|} ∑1<=i1<i2<−−−<ik<=n∣Ai1ˉ∩Ai2ˉ∩−−−∩Aikˉ∣
记括号
B 1 = ( 1 , 2 , − − − , m ) B 2 = ( 2 , 3 , − − − , m + 1 ) − − − B n = ( n , 1 , 2 , − − − , m − 1 ) B_1 = (1,2,---,m) B_2 = (2,3,---,m+1) --- B_n= (n,1,2,---,m-1) B1=(1,2,−−−,m)B2=(2,3,−−−,m+1)−−−Bn=(n,1,2,−−−,m−1)
序列 E = 1 , 2 , − − − , m , 2 , 3 , − − − , m + 1 , − − − , n , 1 , 2 , − − − , m − 1 E = 1,2,---,m,2,3,---,m+1 ,---, n,1,2,---,m-1 E=1,2,−−−,m,2,3,−−−,m+1,−−−,n,1,2,−−−,m−1 (相当于去掉 B 1 , B 2 , − − − , B n B_1,B_2,---,B_n B1,B2,−−−,Bn 的括号并使其首尾相接)
(分别对应序列中的第 1 , 2 , − − − , n 1,2,---,n 1,2,−−−,n 列)
这等价于求对于所有的 1 < = i 1 < i 2 < − − − < i k < = n 1<=i_1<i_2<---<i_k<=n 1<=i1<i2<−−−<ik<=n 在括号 B i 1 , B i 2 , − − − , B i k B_{i_1},B_{i_2},---,B_{i_k} Bi1,Bi2,−−−,Bik 中的每一个括号取一个数使得这 k k k 个数两两不同所得到所有取法和剩下 n − k n-k n−k 个数在位置{ 1 , 2 , − − − , n 1,2,---,n 1,2,−−−,n }-{ i 1 , i 2 , − − − , i k i_1,i_2,---,i_k i1,i2,−−−,ik }上所有 ( n − k ) ! (n-k)! (n−k)! 个全排列组合所形成的所有全排列的总数
设对任意的 1 < = i 1 < i 2 < − − − < i k < = n 1<=i_1<i_2<---<i_k<=n 1<=i1<i2<−−−<ik<=n 在括号 B i 1 , B i 2 , − − − , B i k B_{i_1},B_{i_2},---,B_{i_k} Bi1,Bi2,−−−,Bik 中的每一个括号取一个数 j i s ∈ B i s j_{i_s}\in B_{i_s} jis∈Bis 使得这 k k k 个数两两不同所得到任意取法是 j i 1 , j i 2 , − − − , j i k j_{i_1},j_{i_2},---,j_{i_k} ji1,ji2,−−−,jik ,所有 j i 1 , j i 2 , − − − , j i k j_{i_1},j_{i_2},---,j_{i_k} ji1,ji2,−−−,jik 构成的集合是 D ( n , k ) D(n,k) D(n,k)
记 p ( j i ) p(j_i) p(ji) 表示 j i j_{i} ji 在 E E E 上的位置
则对于任意 ( j 1 , j 2 , − − − , j k ) ∈ D ( n , k ) (j_1,j_2,---,j_k)\in D(n,k) (j1,j2,−−−,jk)∈D(n,k) , j 1 , j 2 , − − − , j k j_1,j_2,---,j_k j1,j2,−−−,jk 是 E E E 中的序列且 p ( j i + 1 ) − p ( j i ) > = m p(j_{i+1})-p(j_{i})>= m p(ji+1)−p(ji)>=m ( 1 < = j < = k − 1 1<=j<=k-1 1<=j<=k−1 )且 j 1 , j k j_1,j_k j1,jk 不会同时取
1 或 2 或 − − − 或 m − 1 1 或 2 或---或 m-1 1或2或−−−或m−1
反过来对 E E E 中任意序列 j 1 , j 2 , − − − , j k j_1,j_2,---,j_k j1,j2,−−−,jk 满足 p ( j i + 1 ) − p ( j i ) > = m p(j_{i+1})-p(j_{i})>= m p(ji+1)−p(ji)>=m ( 1 < = j < = k − 1 1<=j<=k-1 1<=j<=k−1 )且 j 1 , j k j_1,j_k j1,jk 不会同时取 1 1 1 或 2 2 2 或—或 m − 1 m-1 m−1
都有 ( j 1 , j 2 , − − − , j k ) ∈ D ( n , k ) (j_1,j_2,---,j_k)\in D(n,k) (j1,j2,−−−,jk)∈D(n,k)
因此 ∣ D ( n , k ) ∣ |D(n,k)| ∣D(n,k)∣ 即等于 E E E 中满足 p ( j i + 1 ) − p ( j i ) > = m ( 1 < = j < = k − 1 ) p(j_{i+1})-p(j_{i})>= m ( 1<=j<=k-1 ) p(ji+1)−p(ji)>=m(1<=j<=k−1)且 j 1 , j k j_1,j_k j1,jk 不会同时取 1 1 1 或 2 2 2 或—或 m − 1 m-1 m−1
的所有序列 j 1 , j 2 , − − − , j k j_1,j_2,---,j_k j1,j2,−−−,jk 的数目
由定理一 E E E 中所有满足 p ( j i + 1 ) − p ( j i ) > = m p(j_{i+1})-p(j_{i})>= m p(ji+1)−p(ji)>=m ( 1 < = j < = k − 1 1<=j<=k-1 1<=j<=k−1 )的序列数目是 C k n m − ( k − 1 ) ( m − 1 ) C_{k}^{nm-(k-1)(m-1)} Cknm−(k−1)(m−1)
而于 E E E 中满足 p ( j i + 1 ) − p ( j i ) > = m ( 1 < = j < = k − 1 ) p(j_{i+1})-p(j_{i})>= m ( 1<=j<=k-1 ) p(ji+1)−p(ji)>=m(1<=j<=k−1)且 j 1 , j k j_1,j_k j1,jk 同时取 1 1 1 或 2 2 2 或—或 m − 1 m-1 m−1
的所有序列 j 1 , j 2 , − − − , j k j_1,j_2,---,j_k j1,j2,−−−,jk 的数目 N ( E , m , k ) N(E,m,k) N(E,m,k) 计算如下
对 1 < = i < = m − 1 1<=i<=m-1 1<=i<=m−1 ,当 j 1 = i j_1=i j1=i 且 j k = i j_k = i jk=i 时则 j 2 j_2 j2 距 j 1 j_1 j1 最近选择 E E E 在 i + m i+m i+m位置上的数 p 1 , j k − 1 p_1 , j_{k-1} p1,jk−1 距 j k j_k jk 最近选择 E E E 在 n m − ( m − 1 − i ) − m = n m − 2 m + i + 1 nm-(m-1-i)-m = nm-2m+i+1 nm−(m−1−i)−m=nm−2m+i+1 位置上的数 p 2 , p 1 , p 2 p_2 , p_1,p_2 p2,p1,p2 之间(包括 p 1 , p 2 p_1,p_2 p1,p2 )
共有 n m − 2 m + i + 1 − ( i + m ) + 1 = n m − 3 m + 2 nm-2m+i+1-(i+m)+1 = nm-3m+2 nm−2m+i+1−(i+m)+1=nm−3m+2 个数, j 2 , − − − , j k − 1 j_2,---,j_{k-1} j2,−−−,jk−1 只能在这些数中选取,且必须满足 p ( j i + 1 ) − p ( j i ) > = m ( 2 < = j < = k − 2 ) p(j_{i+1})-p(j_{i})>= m ( 2<=j<=k-2 ) p(ji+1)−p(ji)>=m(2<=j<=k−2)同样由定理一其取法总数为 C k − 2 n m − 3 m + 2 − ( k − 3 ) ( m − 1 ) C_{k-2}^{nm-3m+2-(k-3)(m-1)} Ck−2nm−3m+2−(k−3)(m−1)
从而 N ( E , m , k ) = ∑ i = 1 m − 1 C k − 2 n m − 3 m + 2 − ( k − 3 ) ( m − 1 ) = ( m − 1 ) C k − 2 n m − 3 m + 2 − ( k − 3 ) ( m − 1 ) N(E,m,k) = \sum_{i= 1}^{m-1}{C_{k-2}^{nm-3m+2-(k-3)(m-1)}} = (m-1) C_{k-2}^{nm-3m+2-(k-3)(m-1)} N(E,m,k)=∑i=1m−1Ck−2nm−3m+2−(k−3)(m−1)=(m−1)Ck−2nm−3m+2−(k−3)(m−1)
故 D ( n , k ) = C k n m − ( k − 1 ) ( m − 1 ) − ( m − 1 ) C k − 2 n m − 3 m + 2 − ( k − 3 ) ( m − 1 ) D(n,k)=C_{k}^{nm-(k-1)(m-1)} - (m-1) C_{k-2}^{nm-3m+2-(k-3)(m-1)} D(n,k)=Cknm−(k−1)(m−1)−(m−1)Ck−2nm−3m+2−(k−3)(m−1)
从而由前述知 ∑ 1 < = i 1 < i 2 < − − − < i k < = n ∣ A i 1 ˉ ∩ A i 2 ˉ ∩ − − − ∩ A i k ˉ ∣ = \sum_{1<=i_1<i_2<---<i_k<=n}{|\bar{A_{i_1}}\cap \bar{A_{i_2}}\cap ---\cap\bar{A_{i_k}}|} = ∑1<=i1<i2<−−−<ik<=n∣Ai1ˉ∩Ai2ˉ∩−−−∩Aikˉ∣=
( n − k ) ! D ( n , k ) = ( n − k ) ! ( C k n m − ( k − 1 ) ( m − 1 ) − ( m − 1 ) C k − 2 n m − 3 m + 2 − ( k − 3 ) ( m − 1 ) ) (n-k)!D(n,k) = (n-k)!(C_{k}^{nm-(k-1)(m-1)} - (m-1) C_{k-2}^{nm-3m+2-(k-3)(m-1)}) (n−k)!D(n,k)=(n−k)!(Cknm−(k−1)(m−1)−(m−1)Ck−2nm−3m+2−(k−3)(m−1))
故 U ( n , m ) = ∣ S ∣ + ∑ k = 1 n ( − 1 ) k ∑ 1 < = i 1 < i 2 < − − − < i k < = n ∣ A i 1 ˉ ∩ A i 2 ˉ ∩ − − − ∩ A i k ˉ ∣ = U(n,m) = |S|+\sum_{k=1}^{n}{(-1)^k\sum_{1<=i_1<i_2<---<i_k<=n}{|\bar{A_{i_1}}\cap \bar{A_{i_2}}\cap ---\cap\bar{A_{i_k}}|}} = U(n,m)=∣S∣+∑k=1n(−1)k∑1<=i1<i2<−−−<ik<=n∣Ai1ˉ∩Ai2ˉ∩−−−∩Aikˉ∣=
n ! + ∑ k = 1 n ( − 1 ) k ( n − k ) ! ( C k n m − ( k − 1 ) ( m − 1 ) − ( m − 1 ) C k − 2 n m − 3 m + 2 − ( k − 3 ) ( m − 1 ) ) n!+\sum_{k=1}^{n}{(-1)^k}(n-k)!(C_{k}^{nm-(k-1)(m-1)} - (m-1) C_{k-2}^{nm-3m+2-(k-3)(m-1)}) n!+∑k=1n(−1)k(n−k)!(Cknm−(k−1)(m−1)−(m−1)Ck−2nm−3m+2−(k−3)(m−1))
这样就求出了 U ( n , m ) U(n,m) U(n,m) 不过要注意对组合数 C b a C_{b}^{a} Cba 仅当 a > = b > = 0 a>=b>=0 a>=b>=0 不等于0其余情形都等于0